
Detection of Snapshot Isolation Anomalies in Software
Transactional Memory: A Static Analysis Approach

Ricardo J. Dias, João M. Lourenço and João Costa Seco∗

CITI and Departamento de Informática
Universidade Nova de Lisboa, Portugal

{rjfd, joao.lourenco, joao.seco}@di.fct.unl.pt

Technical Report: UNL-DI-5-2011

May 2011

Abstract

Some performance issues of software transactional mem-
ory are caused by unnecessary abort situations where
non serializable and yet non conflicting transactions are
scheduled to execute concurrently. By smartly relaxing
the isolation properties of transactions, transactional sys-
tems may overcome these performance issues and attain
considerable gains. However, it is known that relax-
ing isolation restrictions may lead to execution anoma-
lies causing programs to yield unexpected results. Some
database management systems make that compromise
and allow the option to operate with relaxed isolation
mechanisms. In this cases, developers must accept the
fact that they must explicitly deal with anomalies. In
software transactional memory systems, where transac-
tions protect the volatile state of programs, execution
anomalies may have severe and unforeseen semantic
consequences. In this setting, the balance between a re-
laxed isolation level and the ability to enforce the neces-
sary correctness in general purpose language programs is
harder to achieve.

The solution we devise in this paper is to statically an-
alyze programs to detect the kind of execution anoma-
lies that emerge under snapshot isolation. We propose
a semantic approach to the challenging scenario of ana-
lyzing programs with dynamic allocated data structures.
Although limited to acyclic data structures, our analy-

∗This research was partially supported by the EU COST Action
IC1001 (Euro-TM) and the Portuguese Fundação para a Ciência
e Tecnologia in the research projects PTDC/EIA/74325/2006
(Byzantium), PTDC/EIA-CCO/104583/2008 (StreamLine), and
PTDC/EIA-EIA/113613/2009 (Synergy-VM), and the research grant
SFRH/BD/41765/2007.

sis is able to detect anomalies in well know examples of
anomalous code. Our approach allows a compiler to ei-
ther warn the developer about the possible snapshot iso-
lation anomalies in a given program, or to possibly in-
form automatic correctness strategies to ensure execution
under full serializability.

1 Introduction
Using relaxed isolation levels, such as Snapshot Isola-
tion (SI) [2], is a well known and long used strategy in
database transactional systems to increase performance.
Software Transactional Memory [11, 5] (STM) usually
requires full serializability but, in principle, can also use
SI, although with different semantic guaranties.

Unlike full-fledged STM systems that provide strict
isolation between transactions, STM systems providing
relaxed isolation levels allow for transactions to inter-
fere, and generate non-serializable execution schedules.
Such interferences are commonly known as serializabil-
ity anomalies [2]. One of these anomalies, the write-
skew, occurs when two transactions are writing on dis-
joint memory locations and are entangled in reading data
that is being modified by the other. For instance, con-
sider the implementation of an ordered linked list that
is being accessed in the context of a transactional mem-
ory program. The insert operation has a footprint of
read(R)/write(W) operations (on the next field of list
nodes) that can be depicted as follows:

insert : R −→ . . . −→ R −→ R/W

The invariant here is that the insert operation does not
read beyond the node it writes into. If transactionA reads

1

a node that is being modified by transaction B, from the
invariant above we can infer that either transaction A is
writing on the same node as transaction B (and one of
them will necessarily abort), or transaction A will mod-
ify some other node ahead of the one modified by trans-
action B. Hence, if two transactions A and B are set to
insert a value in the list then no anomaly can occur.

If one considers the remove operation which reads the
field next of the node being removed, its footprint is:

remove : R −→ . . . −→ R −→ R/W −→ R

When a remove operation is set to run concurrently with
other remove or insert operations, then a write-skew
anomaly may be observed. There is a crossed read/write
situation when one transaction removes a node while the
other is removing or inserting a new node just ahead of
it. By introducing a minor correction in the code, an ad-
ditional (dummy) write in the node to be removed, the
footprint for a new remove’ operation becomes

remove’ : R −→ . . . −→ R −→ R/W −→ R/W

and insert and remove’ operations can now be executed
concurrently under SI with no anomalies ever occurring.

In this paper we introduce a static analysis technique
and corresponding algorithm that mechanically asserts
that a given transactional memory application executing
under Snapshot Isolation behaves as if executed under
full serializability. More precisely, we detect the kind
of anomalies of Snapshot Isolation that are known to
lead to non-serializable histories [2]. We build on re-
lated work directed to database transactions [4, 6] and
extend it to the very different domain of transactional
memory. Our technique allows for the automatic iden-
tification of anomalous code patterns which were previ-
ously detected only by ad-hoc code inspection. To the
best of our knowledge, SI has only been applied to STM
in semantically harmless situations [9], where anomalies
do not occur. Our technique allows SI to be used as the
default isolation level for STM applications by signaling
conflicting programs and allowing for explicit code cor-
rections.

We take a standard approach to define our analysis,
and use a simple core imperative language with limited
use of pointer indirection and support for heap allocated
data. Applications written in main stream programming
languages are translated to the core language and then
analyzed. For each transaction in the original applica-
tion we create a separate program in the core language.
We assume that all transactions in the application can
be run concurrently, and define an intra-procedural data-
flow analysis that extracts the information necessary to
detect SI anomalies.

The analysis starts by extracting compact read/write
sets and defining static dependencies between programs,
thus creating a static dependency graph. We then apply
an algorithm to that graph to determine if the concurrent
execution of such transactional programs is serializable
under SI.

The analysis of heap allocated data follows a modi-
fied shape analysis technique [10], that combines shape
graphs with sets of read and written data items. We de-
fine a set of new properties for shape graphs in order to
avoid the state explosion that would result from the ap-
plication of the original definition to our setting. Unlike
in standard shape analysis procedures, termination in our
approach does not depend on the comparison of shape
graphs but rather on the collected read/write-sets, whose
computation converges faster. A drawback of our defi-
nition is that it can only be applied to acyclic data struc-
tures, but we foresee that the model can be extended with
backward pointers to support more general cases.

Like in any other static analysis procedure, we allow
for some kind of false positive results. Nevertheless, we
guarantee that if the analysis procedure does not detect
any serializability anomaly, then all possible executions
will be anomaly-free and correspond to a possible inter-
leaving of the transactions. On the other hand, if some
anomalies are found, they should be considered as po-
tentially harmful. At this stage, analysis results can be
further refined and code can be modified to avoid unde-
sired interferences. The application of our approach to
real programs is more adequate if allied the aggregation
of memory transactions in independent modules.

In summary, we introduce

• a shape graph definition that supports acyclic data
structures and limits the explosion of the state
space;

• an intra-procedural data-flow analysis that extracts
fine grained read and write set information from
transactional programs;

• a procedure to identify static program dependencies
from the results of the data-flow analysis phase;

• an enhanced algorithm to detect SI anomalies based
on the graph of the static program dependencies.

We now proceed by introducing the background work
in Section 2, namely the properties of snapshot isola-
tion and the detection of snapshot isolation anomalies us-
ing dependencies between programs. We follow in Sec-
tion 3 with the description of an intra-procedural data-
flow analysis for a simple imperative language using ex-
tended shape graphs. Given the results of the data-flow

2

void Withdraw (boolean b , i n t value) {
i f (x + y > value)

i f (b) x = x − value ;
else y = y − value ;

}

Figure 1: Withdraw program.

analysis, in Section 4 we describe the construction of a
graph of program dependencies, which is used by the al-
gorithm described in Section 5 for detecting SI anoma-
lies. We proceed by presenting the results obtained when
applying the technique to a known benchmark in Sec-
tion 6, and relating with the work of others in Section 7.
We end with the concluding remarks and some refer-
ences to future work.

2 Background

2.1 Snapshot Isolation

Snapshot Isolation [2] is a relaxed isolation level where
each transaction executes with relation to a private copy
of the system state, taken in the beginning of the transac-
tion and stored in a local buffer. All write operations are
kept pending in the local buffer until they are commit-
ted in the global state. Reading modified items always
refers to the pending values in the local buffer. In all
cases, committing transactions obey the general First-
Commiter-Wins rule. This rule states that a transaction
A can only commit if no other concurrent transaction B
has committed modifications to data items pending to be
committed by transaction A. Hence, for any two concur-
rent transactions modifying the same data item, only the
first one to commit will succeed.

Although appealing for performance reasons, the ap-
plication of SI may lead to non-serializable executions,
resulting in two kinds of consistency anomalies: write-
skew and SI read-only anomaly [4]. Consider the follow-
ing example that suffers from the write-skew anomaly. A
bank client can withdraw money from two possible ac-
counts represented by two shared variables, x and y. The
program listed in Figure 1 can be used in several transac-
tions to perform bank operations customized by its input
values. The behavior is based on a parameter b and on
the sum of the two accounts. Let the initial value of x be
20 and the initial value of y be 80. If two transactions
execute concurrently, one calling the Withdraw(true, 30)
(T1) and the other calling the Withdraw(false, 90) (T2),

then one possible execution history of the two transac-
tions under SI is:

H = R1(x, 20) R2(x, 20) R1(y, 80) R2(y, 80) R1(x, 20)
W1(x,−10) C1 R2(y, 80) W2(y,−10) C2

After the execution of these two transactions the final
sum of the two accounts will be−20, which is a negative
value. Such execution would never be possible under Se-
rializable isolation level, as the last transaction to commit
would abort because it read a value that was written by
the first transaction.

2.2 Program Dependencies and Anomalies
Serialization graphs are the most common formal tool to
define serializable anomalies. In a serialization graph,
nodes correspond to transactions and edges correspond
to data dependencies between transactions. These graphs
are build upon dynamic information collected during ex-
ecution of programs. Three types of transaction depen-
dencies can de defined [4]:write-read (wr), write-write
(ww) and read-write (rw).

The static counter-part of the (dynamic) serialization
graphs is the static dependency graph (SDG). In a SDG,
nodes are programs instead of transactions and edges are
data dependencies between programs. If executed more
than once, a single program P may define the behavior
of multiple transactions.

There is a static dependency between programsPn and
Pm, written Pn

x−ρ−−−→ Pm, where x is a state variable and
ρ is a dependency type (ρ ∈ {wr,ww, rw}) if, for any
two transactions Tn and Tm resulting from the execution
of Pn and Pm respectively, there is a transactional de-
pendency Tn

x−ρ−−−→ Tm on any variable x.
A static dependency between programs Pn and Pm

is said to be vulnerable if it is of type rw and the cor-
responding transactions Tn and Tm may execute con-
currently. A vulnerable static dependency on a vari-
able x between programs Pn and Pm is represented as
Pn

x−rw
===⇒ Pm. Note that a single program P may gen-

erate multiple transactions, hence in a SDG the pro-
gram may have dependencies to itself. In summary, the
SDG(A) of an application A is a graph with programs
P1, . . . , Pk of A as nodes, and with edges labeled as
Pn

x−ρ−−−→ Pm (non-vulnerable) or Pn
x−rw
===⇒ Pm (vul-

nerable) representing static dependencies.
Serializable anomalies can be signaled by the presence

of certain kinds of dangerous structures in the SDG of
an application. Fekete et al. [4] define the concept of
dangerous structure in a static dependency graph. The
SDG(A) of an application A has a dangerous structure

3

ww wr rwP1

Figure 2: Static dependency graph of the Withdraw pro-
gram.

if it contains three nodes P , Q and R (not necessarily
distinct) such that there are vulnerable edges from R to
P and from P to Q, and there is a path from Q to R.
Node P is called the pivot node. If the SDG(A) of an
application A has a dangerous structure, then some exe-
cutions of A may be non-serializable. In the opposite, is
the SDG(A) has no dangerous structures, then all exe-
cutions of A are serializable.

From the Withdraw program depicted in Figure 1 we
can generate the static dependency graph in Figure 2.
There is one node in the graph representing program
Withdraw (P1) and there are three edges1: non-vulnerable
P1

ww−−→ P1 and P1
wr−−→ P1, and vulnerable P1

rw
=⇒ P1.

The vulnerable edge is represented by a dashed arrow
in the diagram. Intuitively the three edges represent the
following situations: the dependency P1

ww−−→ P1 re-
sults from sequentially calling the program P1 twice with
the same value for parameter b, thus generating non-
concurrent transactions; dependency P1

wr−−→ P1 results
from sequentially calling P1 twice with different values
for parameter b; and dependency P1

rw
=⇒ P1 results from

calling P1 twice with different values for parameter b,
and the two corresponding transactions are concurrent.

According to the definition, the SDG in Figure 2 has
a dangerous structure. Note that this does not imply that
the corresponding application will necessarily have a SI
anomaly, but only that it may have one.

We next show how to build a SDG by analyzing the
source code of an application, and how to detect danger-
ous structures that point to possible SI anomalies.

3 Static Analysis
We now define a data-flow analysis based on a small im-
perative language with heap allocated memory [7] and
then describe how to build a SDG from the results of
the analysis. The abstract syntax of the language is the
following:

R ::= x | x.sel
E ::= R | n | E op E | true | false | not E | null
S ::= R := E | skip | S ;S | new R
| if E then S else S | while E do S

1The variable identifiers are omitted for the sake of simplicity.

//x points to the head of a list
//v is the value to be inserted
p := x;
n := p.next;
tv := n.value;
while(tv < v) {

p := n;
n := p.next;
tv := n.value;

}
if (tv != vv) {

new y;
y.value := v;
y.next := n;
p.next := y;

}

Figure 3: Example of an insertion of a value into a linked
list.

Where a program is a statement S. The values of the lan-
guage are integer values (n), boolean values, pointers to
heap cells or the special value null. Arithmetic operators
are only defined for integer values. Boolean expressions
are extended to support equality of pointers and to sup-
port the comparison of pointers with the special value
null. The statement newR assigns the pointer of a new
heap cell to R.

Figure 3 describes a program that implements an insert
function in an ordered singly linked list. By convention,
the value to be inserted is given in variable v and the
pointer for the head of the list is given by variable x.
The program uses local variables n, tv and vv, and the
nodes in this list implementation are heap cells with two
selectors value and next.

We follow a general model of a heap cell where its
contents are only accessible through a finite number of
selectors (cf. fields in structures). For instance, one may
instantiate a cell and assign the resulting pointer to a vari-
able x by using the statement new x. The contents of the
cell may be changed by assigning to a selector val, as in
statement x.val := 1. Note that statement y := x re-
sults in a state where x and y point to the same heap cell,
and that statement x := 1 changes the value of variable
x from a pointer to an integer value. Selectors work like
a dereferencing operator and also provide language sup-
port for dynamically allocated structure-like values.

As expected, the semantics of our language is defined
with relation to a state and a heap. The state is a map-
ping of variables to values, and the heap is a mapping
from heap cells to values. The size of a program state

4

is bounded by the number of variables that occur in the
source code of the program, and the heap is unlimited in
size and structure. In order to analyze the executions of
a program we use a compact and bounded representation
of the state and heap, similar to the standard notion of
Shape Graph [10].

In the remaining of this document, we present the def-
inition of shape graphs that will be used to identify heap
accesses during the data-flow analysis. We then define a
data-flow analysis that generates, for each analyzed pro-
gram, a set of read/write states for variables and heap
accesses. The information retrieved from the analysis
is used to generate a static dependency graph which is
traversed by an algorithm to search for dangerous struc-
tures.

3.1 Shape Graphs

A shape graph is an abstract representation of the state
and heap of a program, defined from the notion of ab-
stract location, which is the representative for one (or
more) heap cells in the program heap. A shape graph
is composed by an abstract state S, which is a mapping
from variable names to abstract locations, and an abstract
heap H, which is a mapping from abstract locations to
abstract locations by means of selectors. We write n

X
to

denote an abstract location, where X ⊆ Var is the set
of state variables pointing to that location. In the general
case, abstract locations are associated to one (and only
one) heap cell. When X = ∅ we call n∅ the summary lo-
cation. In this particular case, n∅ is the representative of
more than one heap cell, more precisely, of all the heap
cells that are not directly pointed by a state variable. For
instance, n{x,y} is the abstract location that represents a
heap cell pointed by the state variables x and y. This also
means that variables x and y are aliases of the same heap
cell.

The original definition of a shape graph by Sagiv et
al. [10] also includes information about sharing of ab-
stract locations, signaling those that are reachable by
more than one abstract location. On the one hand, we
adopt a simpler version, dropping this kind of informa-
tion, and hence we only represent acyclic memory data
structures. On the other hand, we extend the notion of
summary node. Instead of using a single summary node
n∅, we use a set of summary nodes indexed by an inte-
ger number ni∅ (i ∈ N0). Summary node n0∅ plays the
usual role of aggregating a set of heap cells. We usually
omit the index if it is 0 and write only n∅. Summary
nodes with positive indexes, ni∅ with i > 0, represent ab-
stract locations occurring in the middle of a path of an

acyclic data structure which are not directly pointed by
state variables.

We define an abstract state of a program S , Var ×
ALoc , mapping from variables to abstract locations, and
an abstract heap H , ALoc × Sel × ALoc , mapping
from abstract locations to abstract locations via selectors.
Here, ALoc is the infinite set of all abstract locations and
Sel is the finite set of all selectors. We use Locs(S) and
Locs(H) to signify the set of abstract locations used in
a abstract state or abstract heap. The set of all Shape
Graphs is thus SG , S ×H, and a shape graph SG is a
pair (S,H) with S ∈ S andH ∈ H. We refine the notion
of shape graph and define an Acyclic Shape Graph as a
shape graph that satisfies some conditions to cope with
acyclic data structures.

Definition 1 (Acyclic Shape Graph). For all program
states S ∈ S and heaps H ∈ H

1. A state variable can only point to an abstract loca-
tion:

∀n
V
, n

W
∈ Locs(S)∪Locs(H) : (V = W)∨(V ∩

W = ∅)

2. State variables pointing to an AL are referred in its
variable set.

∀(x, nX) ∈ S : x ∈ X

3. A selector of an AL points at most to one AL.

∀(n
V
, s, n

W
), (n

V
, s, n

W ′) ∈ H : (W = W ′)

4. No AL is pointed by any two ALs (the heap is
acyclic).

∀(n
V
, s, n

X
), (n

W
, s′, n

X
) ∈ H : V 6= W ⇒ X =

∅

5. The summary node only points to itself.

∀(n0∅, s, nV
) ∈ H : V = ∅

Since we only generate acyclic shape graphs and for
the sake of simplicity, in the remaining of this paper, and
unless stated otherwise, we will refer to acyclic shape
graphs simply as shape graphs.

Figure 4 depicts a shape graph representing a heap
containing a singly linked list. Circles represent state
variables and rectangles represent abstract locations.
Edges between abstract locations are labelled with the
corresponding selector. This shape graph is defined as
follows:

SG , ({(x, n{x}), (y, n{y}), (z, n{z,w}), (w, n{z,w})},
{(n{x}, next, n{y}), (n{y}, next, n{z,w}),
(n{z,w}, next, n∅), (n∅, next, n∅)})

5

next
next nextnext

n{x} n{z,w} n∅

wyx z

n{y}

Figure 4: Shape Graph representing a singly linked list.

next
next nextnext

n{z,w}

z

n1
∅ n∅

wyx

n{x,y}

Figure 5: Result of the assignment y := x.

A shape graph SG is modified by the evaluation of
assignments and by the cell creation statement (new x).
We will now illustrate the effect of these statements start-
ing with SG of Figure 4 and divide the assignments in
four different fundamental forms: from variable to vari-
able (x := y), from selector to variable (x := y.sel),
from variable to selector (x.sel := y) and from selector
to selector (x.sel1 := y.sel2).

Variable to variable: [x := y] If x is a pointer, the
first effect of this type of assignments is that the vari-
able x must be removed from the set of variables of the
abstract location pointed by x. In the case where the
abstract location is only referred by variable x, written
n{x}, removing the reference results on replacing it by
a summary location. We replace it by a new summary
location ni+1

∅ where i is the maximum index currently
found in the abstract heap.

The second visible effect of the assignment is the cre-
ation of new bindings. This only occurs when the value
being assigned to variable x is a pointer. In this case, the
abstract location pointed by y, nY is updated to nY ∪{x}.

Take the example of the shape graph of Figure 4. The
effect of the assignment y := x is the removal of the
binding of state variable y to the abstract location n{y}.
This results in the shape graph of Figure 5 where n{y}
is replaced by n1∅, and the update of the bindings of both
variables x and y result in replacing the abstract location
n{x} with n{x,y}.

Selector to Variable [x := y.sel] As before, the bind-
ings of x must first be removed, and if y.sel is not a
pointer this is the only effect of the assignment.

next
nextnextnextnext

n{x} n{z} n{w} n∅

wyx z

n{y}

Figure 6: Result of the assignment w := z.next.

When y.sel is a pointer, it either points to an abstract
location n

V
with V 6= ∅, to an intermediate summary

location ni∅ with i > 0, or to the summary location n∅.
In the first case, the bindings described in the abstract

location n
V

are updated to nV ∪{x}, and the connections
in the new graph are such that the state variable x now
points to nV ∪{x}.

In the second case, when y.sel = ni∅ with i > 0, we
have that the abstract location is replaced by n{x}, which
is pointed by the state variable x in the resulting graph.

In the third case, when y.sel = n∅, we must mate-
rialize a new abstract location n{x} from the summary
location. All links from n∅ to itself must now be created
(with the same selectors) from n{x} to n∅. Also, y.sel
must be updated to point to n{x}.

Figure 6 illustrates the effect of assignment w :=
z.next in a heap represented by the shape graph of Fig-
ure 4. There is a new abstract location in the graph,
n{w} pointed byw, and the abstract location pointed by z
changed to n{z}. The cyclic reference that the summary
node n∅ has to itself in Figure 4, through selector next,
causes a reference from the new abstract location n{w}
to n∅ to appear in Figure 6. The reference from n{z} to
n∅ in Figure 4 is modified in Figure 6 to a reference from
n{z} to n{w}, again, through selector next.

Variable to selector [x.sel := y] When the value de-
noted by y is an abstract location, the resulting graph af-
ter this assignment has an updated edge from n

X
, where

x ∈ X , to the abstract location pointed by y, through
selector sel.

Selector to selector [x.sel1 := y.sel2] The effect of
this assignment statement can be understood by compo-
sition of a sequence of previous assignment forms. It can
be re-written by the sequence: t := y.sel2; x.sel1 :=
t; t := null, where variable t is temporary.

Cell creation [new x] In the shape graph resulting
from evaluating a cell creation statement, the old bind-
ing of variable x is removed as in all other cases, and a
new abstract location n{x} pointed by x is added to the
shape graph. In the case of the statement new x.sel,

6

it can be explained by the sequence: new t; x.sel :=
t; t := null, where variable t is temporary.

We use shape graphs in the data-flow analysis to model
the heap cells used by a transaction. We model the usage
of a heap cell by a triple with a variable name, an inte-
ger number, and a selector. The pair composed by the
variable name x and the integer value n refers to the set
of abstract locations that are reachable from the variable
x in n number of hops. All abstract locations identified
by the same variable and distance measure are indistin-
guishable from now on, which is a conservative approach
in terms of the analysis. So, when modeling the usage of
one particular heap cell we are really referring to a set
of abstract locations. The usage of an abstract location
is completed with a selector. This distance measure of
an abstract location corresponds to the length of the path
from a state variable in the heap, its root variable, and the
abstract location.

The distance of an abstract location to the program
state is calculated by the maximum number of edges in
the path that lead from one to the other, ignoring the
number of edges pointing to summary nodes ni∅ with
i > 0. Given a shape graph SG and an abstract location
n

X
, function dist(SG, n

X
) computes a pair with the root

variable x for n
X

, the farthest variable in the program
state, and the distance between them. For example, in the
shape graph of Figure 5, the result of dist(SG, n{x,y}) is
(x, 1) and the result of dist(SG, n{z,w}) is (x, 2). When
more than one state variable can be root variable we
choose the lexicographically smaller one.

In the subsequent analysis, we use function id that re-
trieves the root variable and corresponding distance for
an expression accessing an abstract location. Function
id is defined as follows id : SG×V ar×Sel −→ V ar×
N × Sel where id(SG, x, sel) , (dist(SG, n

X
), sel)

where n
X

is such that SG = (S,H) and (x, n
X

) ∈ S.
For example, when analyzing the expression z.next :=
null with relation to the shape graph of Figure 5,
our algorithm computes id(SG, z, next) and obtains
(x, 2, next).

3.2 Read-Write Analysis

In our language, transactional applications consist of sev-
eral programs, each one representing a separate transac-
tion. In order to define static dependencies between these
programs we need to know which data items they write
or read. We start with a finite set of shared variables that
all programs can read and write. We then use a standard
data-flow analysis to obtain the set of variables and heap
accesses that each program performs. We hereafter refer

�

? M

m

Figure 6: Lattice Γ order relation diagram.

Lemma 1. The partial order relation � defined over the set Γ is reflexive.

Proof. We defined the elements of � as {(x, y) ∈ Γ2 : x = y} ∪ {(x,�) : x ∈ Γ} ∪ {(m, M), (m, ?)}. The subset
of � , {(x, y) ∈ Γ2 : x = y}, is the set of all elements (x, y) ∈ Γ2 where x = y which implies that the relation �
contains all the pairs (x, y) belonging to Γ2 where x = y.

Lemma 2. The partial order relation � defined over the set Γ is transitive.

Proof. The relation � is transitive if ∀x,y,z : (x, y) ∈� ∧ (y, z) ∈� ⇒ (x, z) ∈� . In � the only pair of
elements (x, y) and (z, t) such that x �= t and y = z are those that x = m and t = �, and the pair (x, t) = (m,�)
belongs to � which proves the transitive implication.

Lemma 3. The partial order relation � defined over the set Γ is anti-symmetric.

Proof. The relation � is anti-symmetric if ∀x,y : (x, y) ∈� ∧ (y, x) ∈� ⇒ x = y. In � does not exist any pair
of elements (x, y) and (z, t) such that x = t and y = z. Therefore the left side of the anti-symmetric implication
is false and the overall implication is true meaning that the relation � is anti-symmetric.

With the above proved claims we can state that the set Γ with the partial order relation � is a lattice
represented by the diagram depicted in Figure 6.

Now we define a set Υ = Γ×Γ×V ar where V ar is the set of all variables present in a program. An element
of set Υ of the form (M,m)x means that variable x is read in every possible execution of the program and is
written at least in one possible execution of the program.

We also define a partial order relation � over the set Υ as:

Definition 3 (Partial order relation �). � =
��

(x, y, z), (t, u, v)
�

: (x, t) ∈� ∧ (y, u) ∈� ∧ z = v
�

Lemma 4. The partial order relation � defined over the set Υ is reflexive.

Proof. By the definition of the relation � , the set of � contains all elements satisfying the reflexive property.

Lemma 5. The partial order relation � defined over the set Υ is transitive.

Proof. Our hypothesis are:
�
(x, y, z), (t, u, v)

�
∈� and

�
(t, u, v), (q, r, s)

�
∈� , and we want to prove that�

(x, y, z), (q, r, s)
�
∈� . If

�
(x, y, z), (q, r, s)

�
∈� then by Definition 3 x � q, y � r and z = s.

• Case [x � q]: Using our hypothesis if
�
(x, y, z), (t, u, v)

�
∈� then x � t and if

�
(t, u, v), (q, r, s)

�
∈� then

t � q, therefore x � q.

• Case [y � r]: Using our hypothesis if
�
(x, y, z), (t, u, v)

�
∈� then y � u and if

�
(t, u, v), (q, r, s)

�
∈� then

u � r, therefore y � r.

• Case [z = s]: Using our hypothesis if
�
(x, y, z), (t, u, v)

�
∈� then by Definition 3 z = v and if�

(t, u, v), (q, r, s)
�
∈� then by Definition 3 v = s, therefore z = s.

Lemma 6. The partial order relation � defined over the set Υ is anti-symmetric.

10

Figure 7: Order relation v diagram in Γ.

to both shared variables and heap accesses as data items.
Our data-flow analysis associates data items to a read-

/write state. A read/write state of a data item is a pair of
values from the set Γ = {?,M,m,>}. The first compo-
nent of the pair indicates the read state of the data item,
and the second component indicates its write state. A ?
value in the read/write state for a data access x means
that x is not read/written by the program. A M value in
the read/write state for a data access x means that x is
indeed read/written by the program. A m value in the
read/write state for a data access x means that x may be
read/written by the program (at least by one possible ex-
ecution path). Looking at a pair of the form (M,m)x,
it means that data item x is read in all possible execu-
tions of the program and that it is written at least in of
the possible executions of the program.

We now define the data-flow transfer functions over a
lattice defined from the set Υ = Γ× Γ× (Cell ∪Var),
and the order relation v depicted in Figure 7 on Γ. Re-
member that Var is the set of all state variable and
consider Cell as the set of all heap accesses defined as
Cell = Var ×N×Sel. Notice that a heap access refers
to all abstract locations at a certain depth from a root state
variable in the data structure. In spite of a precision loss,
the usage of heap accesses is conservative with relation
to singular abstract locations and is still highly informa-
tive.

Besides the read/write states for data items, the trans-
fer functions of our analysis also compute a set of shape
graphs on each node of the control-flow graph. Shape
graphs are used to identify the abstract locations being
read or written by the statements. We need to manu-
ally make the bootstrap of the shape graph by choos-
ing the shape graph that better describes the invariant of
the heap, and associating it to the starting node of the
control-flow graph. For instance, to analyze the code of
a program based on a singly linked list we need to use a
shape graph as depicted in Figure 8. The automatic gen-
eration of bootstrap shape graphs is out of the scope of
this work.

We define our analysis in a lattice over the set Λ ,
Υ × P(SG) with the order relation applied to the set Υ

7

next

next

n∅n{head}head

Figure 8: A bootstrap shape graph of a singly linked list.

and the transfer functions Ren, which computes the en-
try point of a node of the control flow graph, and Rex
that computes the exit point of a node of the control flow
graph. We define the functions such that the analysis pro-
ceeds forward in the graph.

A key point for the convergence of the data-flow analy-
sis is that only the set Υ is taken into account in the order
relation, thus making the functions monotonic. Shape
graphs in the node annotations are only used to identify
the used heap cells.

Each transfer function works over an ordered pair
where the first entry is the lattice Υ and the second en-
try is the set of shape graphs that represent the state and
the heap. Below, we use the notation 1p to denote the
first component of a given pair p, and 2p to denote the
second component. The entry functionRen is defined as
follows:

Definition 2 (Entry function).

Ren(l)

=

(
∅, {SG }

)
if l = init(P)(d

{1Rex(l
′) | (l′, l) ∈ flow(P)},⊕

{2Rex(l
′) | (l′, l) ∈ flow(P)}

)
otherwise

The case for the initial node of the CFG, the entry funci-
ton defines that the read/write state set is empty, and that
the set of shape graphs contains only the bootstrap shape
graph SG . In the case for the other nodes, the results
of the exit functions of the predecessors of the current
node (which are pairs) are merged by means of the great-
est lower bound (

d
) for the set of elements on the first

component (of the resulting pairs), and using a choice
operator

⊕
to combine the shape graphs in the second

component of the pairs. The choice operator
⊕

merges
shape graphs according to the relation K whose descrip-
tion follows. We use flow(P) to denote the set of all
edges in the control-flow graph.

Two shape graphsA andB are in the relationK in one
of three cases. In the first case, we consider strict equiv-
alence of graphs. In the second case, two shape graphs
are in the relation K if both have the same state vari-
ables, and if all abstract (non-summary) locations have
the same distance to the state of the program on both
graphs. Recall the dist(SG ,ALoc) function defined ear-
lier on this section. In the third scenario, we consider that

SG / Vars x y z

A 1 2 3
B 1 1 2

A(d = 1) 1 1 2

Table 1: Variable distances for shape graphs A and B.

two shape graphs are equivalent if by decreasing once the
distance of a well determined set of abstract locations to
the program state, we obtain an equivalent shape graph
by one of the other two cases.

To explain how we build the set of abstract locations
to be decreased we use the example depicted in Figure 9.
Shape graph A is equivalent to shape graph B by the
third case since the merging of the two abstract locations
n{x} and n{y} in shape graph A results in a shape graph
equivalent to B.

Pick a number d ∈ N to use as threshold, we say
that A is equivalent to B if for all non-summary abstract
locations in A, whose distance is less or equal than d,
their corresponding distances in B are the same, and for
all non-summary abstract locations in A, with distance
greater than d, their distances in A are greater by one
than the corresponding distances inB. Table 1 shows the
distance of all non-summary abstract locations for shape
graphs A and B in Figure 9. By choosing d = 1 as a
threshold, and decreasing all the distances greater than
d, shape graph A becomes equivalent to shape graph B.
In this case, it is visible that shape graph A subsumes
shape graph B. We use this to define the choice operator
to return shape graph A and discard shape graph B.

Before we define the exit function Rex we need to
define some auxiliary functions: sameDist, write and
read. Function sameDist asserts if an abstract location
pointed by a state variable is at the same distance in all
elements of a given set of shape graphs. Function write
computes the write state of an expression, if the expres-
sion denotes a pointer, then it makes use of the shape
graph to retrieve an identifier. Function read is dual to
functionwrite for read states. Functions read andwrite
use a binary operator C, which takes a complete read-
/write state and a new state for a particular variable, and
returns a state with that variable replaced by the given
state.

8

Definition 3 (Record a Read Operation).

read(U, SG,E)

=

U C {(M, σ̂x(U))x} if E = x

U C {(M, σ̂i(U))i | sg ∈ SG ∧ i = id(sg, x, sel)}
if E = x.sel ∧ sameDist(SG, x)

U C {(m, σ̂i(U))i | sg ∈ SG ∧ i = id(sg, x, sel)}
if E = x.sel ∧ ¬sameDist(SG, x)

We write σ̂ to denote the previous write state of a data
item.

If the expression is a variable access then the read state
is updated to value M and the write value in the state is
kept as it was (σ̂x(U)). In the case of a selector access, x
must be a pointer and if the distance to the program state
of that abstract location is the same in all possible heap
configurations (shape graphs), then the value is updated
to M since we are certain this abstract location is going
to be read. If we cannot establish a single distance for all
shape graphs, then the value is updated to m. Definition
of function write is very similar to the definition above
but it updates the write state part and keeps the read state
untouched.

We also use function eval(SG, S) to obtain the ef-
fect of executing a statement in a heap modeled by a
given shape graph according. We omit a formal defi-
nition of this function (that can be found in a technical
report [omitted for review purposes]) since its intuitive
semantics is given in Section 3.1. Function blocks(P)
denotes the set of all elementary blocks in the control-
flow graph.

We can now define the exit function Rex that com-
putes the read/write states of all data items:

A

next
nextnextnext

n{x} n{z} n∅

yx z

n{y}

B

next
nextnext

n{z}n{x,y} n∅

yx z

Figure 9: Example of two equivalent shape graphs.

Definition 4 (Exit Function).

Rex(l)

=

(write(U, SG,R), {sg′ | sg ∈ SG
∧ sg′ = eval(sg, [R := E])})

if Bl = [R := E], where Bl ∈
blocks(P) and E 6= (y|y.sel′),
andRen(l) = (U, SG)

(write(U, SG,R)C read(U, SG,E), {sg′ | sg ∈ SG
∧ sg′ = eval(sg, [R := E])})

if Bl = [R := E], where Bl ∈
blocks(P) and E = (y|y.sel′),
andRen(l) = (U, SG)

(read(U, SG,E), SG)

if Bl = [E], where Bl ∈ blocks(P)
and E = (x|x.sel), and Ren(l) =
(U, SG)

(write(U, SG,R), {sg′ | sg ∈ SG
∧ sg′ = eval(sg, [newR])})

if Bl = [newR], where Bl ∈
blocks(P) and R = (x|x.sel), and
Ren(l) = (U, SG)

Ren(l) otherwise

On all cases of the exit function, we compute a new shape
graph based on the effect of the statement in the current
node, and record the effect of writing or reading a data
item in the resulting set.

The first case records the effect of an assignment of a
literal value to a state variable or heap cell, it records a
writing on the abstract location denoted by the left hand
side of the assignment. The second case defines the ef-
fect of assigning a pointer to a state variable or heap cell,
it records a writing on the abstract location on the left
hand side and reading the abstract location on the right
hand side. The third case is of an expression reading a
data item. The forth case is a creation of a heap cell and

9

records a writing on the given state variable (x) or ab-
stract location (x.sel). In all other cases, the effect is
void and the set is the same as it is in the entry of the
node.

The final result of this analysis will be a set of read-
/write states for several shared variables and several heap
accesses (sets of abstract locations). For instance the re-
sult of the analysis when applied to the program of Fig-
ure 3 is:
{(M, ?)x, (M, ?)(x,1,next), (m,m)(x,2,next), (m, ?)(x,2,value),
(M, ?)(x,3,value)}

In the cases where we have more than one type of se-
lector that is used as a path selector in a data structure
(e.g., binary tree), we rename these selectors to a com-
mon name, thus conservatively merging the information
of heap accesses read/write state once again. In the next
section we present the procedure to build a static depen-
dency graph from the data-flow analysis results.

4 Generating Static Dependencies
By considering an application as a set of programs that
may be executed in parallel, and given the read-write
analysis of the application, as described in Section 3.2,
we compare the set of read/write states of each program
with all other programs to create a Static Dependency
Graph (SDG). This approach needs

(
n
2

)
+ n compar-

isons to build the graph. These is arguably a large num-
ber comparisons, specially if we consider a large number
of concurrent programs. Since we don’t know which pro-
grams will execute in parallel a priori, we conservatively
assume that all programs are concurrent with each other
and even with other instances of themselves. The com-
plexity of the graph construction algorithm may be sig-
nificantly reduced by using orthogonal techniques such
as the May-Happen-in-Parallel analysis [3], to determine
which programs may execute in parallel. Domain spe-
cific information provided by the developer may also be
used to restrict the set of programs to be analyzed.

For all pairs of programs (Pi, Pj) of an application, we
compare the two corresponding sets of read/write states
resulting from the data-flow analysis—which are subsets
of set Υ—and produce a set of program dependencies,
thus defining a static dependency graph.

The kind of a dependency that exists between two pro-
grams is determined by two factors: the value of the read-
/write states of data items in both programs and whether
they can be executed concurrently. We say that two pro-
grams Pi and Pj are not concurrent if they both have
a write state M for the same variable. By the First-
Commiter-Wins rule, the execution of these two pro-

grams is always synchronized, and if they run in parallel
one must abort.

There is a dependency relation between two programs
if both access the same data item and at least one of those
accesses is an update. Static dependencies are defined
from the results of the analysis as follows:

Definition 5. [Static Dependencies] For all programs
Pi, Pj in an application, and all read/write states
Ui, Uj ⊆ Υ where Ui is the read/write state of Pi and
Uj is the read/write state of Pj .

(Variable Dependencies) If there is a variable x such
that (, w)x ∈ Ui and (r,)x ∈ Uj where w 6= ? and
r 6= ? then:

1. if (, α)x ∈ Ui and (, β)x ∈ Uj where α 6= ? and
β 6= ? then Pi

x−ww−−−−→ Pj

2. if (, α)x ∈ Ui and (β,)x ∈ Uj where α 6= ? and
β 6= ? then Pi

x−wr−−−−→ Pj

3. if (α,)x ∈ Ui and (, β)x ∈ Uj where α 6= ?
and β 6= ?, and Pi and Pj are not concurrent then
Pi

x−rw−−−−→ Pj

4. if (α,)x ∈ Ui and (, β)x ∈ Uj where α 6= ? and
β 6= ?, and Pi and Pj are concurrent then Pi

x−rw
===⇒

Pj

(Heap Access Dependencies) If there is a heap access
a = (x, n1, sel) and b = (y, n2, sel) such that (, w)a ∈
Ui and (r,)b ∈ Uj where w 6= ? and r 6= ? then:

1. if (, α)(x,n1,sel) ∈ Ui and (, β)(y,n2,sel) ∈ Uj

where α 6= ? and β 6= ? then Pi
((x,n1),(y,n2))−ww−−−−−−−−−−−−−→

Pj

2. if (, α)(x,n1,sel) ∈ Ui and (β,)(y,n2,sel) ∈ Uj

where α 6= ? and β 6= ? then Pi
((x,n1),(y,n2))−wr−−−−−−−−−−−−→

Pj

3. if (α,)(x,n1,sel) ∈ Ui and (, β)(y,n2,sel) ∈ Uj
where α 6= ? and β 6= ?, and Pi and Pj are not

concurrent then Pi
((x,n1),(y,n2))−rw−−−−−−−−−−−−→ Pj

4. if (α,)(x,n1,sel) ∈ Ui and (, β)(y,n2,sel) ∈ Uj
where α 6= ? and β 6= ?, and Pi and Pj are concur-

rent then Pi
((x,n1),(y,n2))−rw
============⇒ Pj

10

x − rw

x − rw
P2P1

Figure 10: A SDG with a cycle of read-write dependen-
cies for the same variable.

It is important to note that the comparison between pro-
grams P1 and P2 is a two-way procedure. Most of the
times this comparison generates dependencies in both
ways. For instance, if we consider programs P1 with the
analysis yieldingR1 = {(M,m)x} and P2 with the anal-
ysis yielding R2 = {(m,M)x}, comparing them gener-
ates two dependencies: P1

wr−−→ P2 since P1 may write
variable x that is being read by P2; and P2

wr−−→ P1 be-
cause P2 writes variable x which may being read by P1.

If we know that programs Pi and Pj are not concur-
rent, we generate non-vulnerable read-write dependen-
cies.

4.1 Incompatible Variable Static Depen-
dencies

Definition 5 generates pairs of static dependencies that
cannot co-exist in a real execution, and although they are
harmless, they will be detected as dangerous structures.
For instance, consider the two programsP1 andP2 where
P1 = P2 and where the analysis yields {(m,m)x}. We
obtain the simplified SDG of Figure 10.

According to definition of dangerous structures, the
SDG for programs P1 and P2 contains a dangerous
structure. However, no execution of these programs will
trigger a SI anomaly. This is due to the existence of some
pairs of edges that are incompatible with each other, thus
we cannot blindly apply the algorithm to detect danger-
ous structures, as presented in Section 2.2, as we would
find too many false positives.

When traversing the edges in the SDG depicted in
Figure 10, one can observe that P1 has an incoming vul-
nerable edge from P2, has an outgoing vulnerable edge
to P2, and there is cyclic path from P2 to itself. Now,
consider a history with two committed transactions T1
and T2, resulting from the execution of P1 and P2 respec-
tively. We claim that is not possible to define such history
under Snapshot Isolation if there is a transactional de-
pendency T1

x−rw−−−−→ T2 and a transactional dependency
T2

x−rw−−−−→ T1. Consider that T1 is executing concurrently
with T2, and there are dependencies T1

x−rw−−−−→ T2 and
T2

x−rw−−−−→ T1. These dependencies mean that T1 reads
variable x and T2 writes variable x, and that T2 reads
variable x and T1 writes variable x. From the above one

((x, 1), (y, 2)) − rw

((y, 1), (y, 2)) − rw

((x, 2), (y, 2)) − rw

((y, 1), (x, 3)) − rw

P2P1

Figure 11: A SDG with a cycle of read-write dependen-
cies for heap accesses.

can infer that T1 and T2 are necessarily concurrent, that
both write to variable x, and that both commit. How-
ever, by the First-Committer-Wins rule, one of the two
transactions should have aborted, hence it is not possible
to define such a history. This incompatibility between
edges also applies to the other types of dependencies.

Given these observations, if we apply the definition of
dangerous structures to the SDG of Figure 10 and follow
the edge P1

x−rw
===⇒ P2, we can ignore the same type of

edge for the same variable in the opposite direction, i.e.,
the edge P2

x−rw
===⇒ P1.

4.2 Incompatible Heap Access Static De-
pendencies

The processing of static dependencies for heap ac-
cesses must also be enhanced, as there are pairs
of heap access static dependencies that can not
exist in a real execution. Consider an exam-
ple with two programs P1 = {(M, ?)(x,1,sel),
(M, ?)(x,2,sel), (?,M)(x,3,sel), (M, ?)(y,1,sel)} and
P2 = {(M, ?)(y,1,sel), (M,M)(y,2,sel)}. Figure 11
depicts the simplified SDG for these two programs,
which resulted from their static dependencies. Looking
at this SDG is easy to identify a dangerous structure
between P1 and P2, but this is actually a false positive.

In this example the dependency P2
((y,1),(x,3))−rw
==========⇒

P1 is incompatible with the other three opposite depen-
dencies. When we say that there is a static dependency

P1
((x,1),(y,2))−rw
==========⇒ P2, it means that we are assuming

that the heap cell accessed by P1 with base variable x
and distance 1, is the same heap cell accessed by P2 with
base variable y and distance 2. If the heap cell (x, 1) in
P1, that from now on we will represent as P1(x, 1), is
the same as P2(y, 2) than it is impossible that the heap
cell P1(x, 3) be the same as the P2(y, 1), as cell P1(x, 3)
comes after cell P1(x, 1) and cell P2(y, 1) comes before

11

P2(y, 2), and we are assuming only acyclic data struc-
tures. This can be illustrated in the following diagram:

P1 : x 1 → 2 → 3
P2 : y 1 → 2

Also, if we assume P1(x, 2) to be the same as P2(y, 2),
then we have the following diagram:

P1 : x 1 → 2 → 3
P2 : y 1 → 2

In the case of the dependency P1
((y,1),(y,2))−rw
==========⇒ P2, we

are assuming that variable y in P1 is the same as variable
y in P2, but the opposite dependency assume that vari-
able y in P2 is the same as variable x in P1, and therefore
they are incompatible.

If the dependency P2
((y,1),(x,3))−rw
==========⇒ P1 is incompat-

ible with the other three opposite dependencies, then the
SDG depicted in Figure 11 has no dangerous structures.

5 Dependency Detection Algorithm

The algorithm for detecting dangerous structures, de-
scribed in Section 2.2, must be extended to ignore incom-
patible dependencies as defined in Sections 4.1 and 4.2.
The pseudo-code in Algorithm 1 defines the new proce-
dure for detecting dangerous structures in an SDG . It
looks for cyclic paths in the graph with at least two con-
secutive vulnerable edges. This pattern identifies a dan-
gerous structure in the SDG and signals the correspond-
ing anomaly. The application of this algorithm to the
SDG finalizes our static analysis procedure. The overal
output is a set of possible SI anomalies and the corre-
sponding set of anomalous programs.

The main difference between our algorithm and the
algorithm described in Section 2.2 is that we keep the
history of visited dependencies and check for their com-
patibility in the rest of the graph. Function compatible
tests whether an edge e is compatible with the trail
of edges already visited. The pseudo-code in Algo-
rithm 2 defines function compatible, where function
isHeapAccess asserts that an edge is a dependency on
a heap access. Functions varF , distF , varS, and distS
extract components from heap access tuples of the form
((x, d1), (y, d2)), their results are respectively x, d1, y,
and d2. Function var denotes the variable of a given
variable dependency in the graph, and function type de-
notes the type of a given dependency.

Algorithm 1: Detection of Dangerous Structures
Input: nodes[], edges[], visited[]
Result: true or false
initialization;
foreach Node n : nodes do

foreach Edge in : incoming(n, edges) do
if vulnerable(in) then

add(visited, in);
foreach Edge out : outgoing(n, edges) do

if vulnerable(out) ∧ compatible(out,
visited) then

add(visited, out);
if existsPath(target(out),
source(in), visited) then

return true;
end

end
end

end
end
clear(visited);

end
return false;

6 Validation
In order to validate our approach, we developed a pro-
totype using Polyglot [8] to analyze Java programs ex-
tended with software transactional memory. In our
language, transactional methods are identified by an
@Atomic annotation accepting two parameters. One
parameter establishes the initial state of the heap, and
the other associates a group name to that transactional
method. All transactional methods annotated with the
same group name are considered, by the developer, as
concurrent and are analyzed together in the same static
dependency graph.

We apply our analysis to an implementation of the
SmallBank benchmark [1], originally used to evaluate SI
database systems crafted to dynamically avoid anoma-
lies. Along with the description of the benchmark,
the authors also provide its SDG , identify a dangerous
structure in the graph and corresponding anomaly. Our
goal is to mechanically obtain the same results.

The benchmark contains five banking proce-
dures [1]: Balance, Deposit Check, Transaction Saving,
Amalgamate and Write Check. These proce-
dures operate over three relations: Account(Name,
CustomerId), Saving(CustomerId, Balance), and
Checking(CustomerId, Balance). The Account relation

12

Algorithm 2: compatible function
Input: edge, visited[]
Result: true or false
foreach Edge v : visited do

if source(edge) = target(v) ∧ target(edge) =
source(v) then

if isHeapAccess(edge) ∧ isHeapAccess(v)
then

if varF(edge) = varS(v) ∧ varS(edge) =
varF(v) then

if distF(edge) = distS(v) ∧
distS(edge) = distF(v) ∧ type(edge) =
type(v) then

return false;
else if

(
distF(edge) ≥ distS(v) ∧

distS(edge) ≤ distF(v)
)
∨(

distF(edge) ≤ distS(v) ∧ distS(edge)
≥ distF(v)

)
then

return false;
end

else if varF(edge) = varS(e) ∧ varS(edge)
6= varF(e) then

return false;
else if varF(edge) 6= varS(e) ∧
varS(edge) = varF(e) then

return false;
end

else if not (isHeapAccess(edge) ∨
isHeapAccess(v)) then

if var(edge) = var(v) ∧ type(edge) =
type(v) then

return false;
end

else
return false;

end
end

end
return true;

identifies the customers of the bank. The Balance at-
tribute in both Saving and Checking relations quantifies
the amount in each kind of account for each customer.
In our implementation of the benchmark, we represent
the three relations using an ordered singly linked list of
triples, containing a name and a balance for each kind
of account. Each banking procedure is implemented as
a Java method, tagged with the @Atomic annotation,
and operating over the triples in the list. We divide
the transactional methods in two groups, one for the

add ={(M, ?)h, (M, ?)(h,1,next), (m,m)(h,2,next)},
remove ={(M, ?)h, (M, ?)(h,1,next), (m,m)(h,2,next),

(m, ?)(h,3,next)}
get ={(M, ?)h, (M, ?)(h,1,next), (m, ?)(h,2,next)}

Table 2: Analysis on the list group.

add
rw
=⇒ remove

rw
=⇒ add (write-skew)

remove
rw
=⇒ remove

rw
=⇒ remove (write-skew)

get
rw
=⇒ add

rw
=⇒ remove (False Positive)

get
rw
=⇒ remove

rw
=⇒ add (False Positive)

Table 3: Anomalies

list operations and another for the five SmallBank
benchmark operations.

The list group contains three transactional methods:
add, remove and get. The list nodes are stored in heap
cells with selector next pointing to the next node in the
list, and selector val storing the node’s value. The re-
sult of the data-flow analysis on this group, focused on
the selector next, is presented in Table 2. The selec-
tor val is irrelevant for detecting anomalies. The SDG
generated from the result of the data-flow analysis is de-
picted in Figure 12, where we can identify the dangerous
structures described in Table 3. Two of the dangerous
structures, involving the get method, are false positives.

The write-skew anomalies detected by our analysis,
involving the transactions add and remove, correspond
to the example introduced in Section 1. These anoma-
lies can be corrected by forcing full serializability on the
execution of add and remove methods, or by adding a
dummy write operation on the node to be removed by
the remove method.

The results of the analysis of the five transactional
methods in the benchmark group are presented in Ta-
ble 4. The SDG generated from the result of the data-
flow analysis is depicted in Figure 13. The only danger-
ous structure identified is Bal rw

=⇒ WC
rw
=⇒ TS, where

WC is the pivot. This dangerous structure is the one
originally referred in the benchmark [1].

Our prototype is able to mechanically identify all the
expected anomalies in this sample code, but for the first
time through a semantic analysis, and targeting the chal-
lenging setting of transactional memory programs writ-
ten in a general purpose language.

13

add remove

get

Figure 12: SDG of an ordered linked list.

Bal ={(M, ?)(a,1,chec), (M, ?)(a,1,savi)}
DC ={(M,M)(a,1,chec)}
TS ={(M,M)(a,1,savi)}

Amg ={(M,M)(a1,1,chec), (M,M)(a1,1,savi), (M,M)(a2,1,chec)}
WC ={(M,M)(a,1,chec), (M, ?)(a,1,savi)}

Table 4: Analysis on the benchmark group.

7 Related Work
Software Transactional Memory (STM) [11, 5] systems
commonly implement full serializability to ensure the
correct execution of transactional memory programs. To
the best of our knowledge, SI-STM [9] is the only im-
plementation of a STM using Snapshot Isolation. Their
work focuses on the improvement of transactional pro-
cessing throughput by using a snapshot isolation algo-
rithm. They also propose a SI safe variant of the algo-
rithm where anomalies are automatic and dynamically
avoided by enforcing validation of read/write conflicts.
In our work, we aim at providing the serializability se-
mantics under snapshot isolation STM systems. This is
achieved by performing a static analysis to assert that no
SI anomalies will occur when executing a transactional
application.

The use of Snapshot Isolation in databases is a com-
mon place, and there is some previous works on the de-
tection of SI anomalies in this domain. Our work is
clearly inspired in [4], which presents the theory of SI
anomaly detection and a syntactic analysis to detect SI
anomalies for the database setting. They assume appli-
cations are described in some form of pseudo-code, with-
out conditional (if-then-else) and cyclic structures. The
proposed analysis is informally described and applied to
the database benchmark TPC-C [12]. A sequel of that
work [6], describes a prototype which is able to auto-
matically analyze database applications. Their syntactic
analysis is based on the names of the columns accessed
in the SQL statements that occur within the transaction.
They also discuss some solutions to reduce the number of
false positives produced by their analysis. Although tar-
geting similar results, our work deals with significantly

Bal

WC

DC

Amg

TS

Figure 13: SDG of the SmallBank benchmark.

different problems. The more significant one is related
to the full power of general purpose languages and the
use of dynamically allocated heap data structures. Be-
sides that, we treat the full control-flow of imperative
programs. Our work strives for reducing the state explo-
sion during the analysis by conservatively merging some
kinds of information.

8 Concluding Remarks
In this paper we define a new static analysis technique
and present the corresponding algorithm to mechanically
assert that a given transactional memory application ex-
ecuting under Snapshot Isolation will not suffer from SI
anomalies. Our work allows for the automatic identifica-
tion of anomalous transactional code, by signaling con-
flicting programs and allowing for explicit code correc-
tions. Thus, we enable the use of SI as the default isola-
tion level for STM applications.

A major difference of our analysis to existing related
work [4, 6] is that, instead of targeting languages with
limited expressiveness like SQL, we target a general pur-
pose imperative language with support for dynamically
allocated data structures. We define a data-flow analysis
that extracts fine grained read/write state information for
each state variable and heap cell manipulated by trans-
actional programs. We adapt a standard shape analysis
technique [10] to track heap cell manipulation during the
analysis.

The results of our data-flow analysis are then used
to build dependency graphs on programs from which
we can detect connection patterns that correspond to SI
anomalies. Our algorithm may be used in the future as
input for manual or automatic procedures of anomalous
code correction.

To validate our approach, we implemented a proto-
type of the analysis framework capable of identifying
the same anomalies in complete Java programs as re-
lated benchmarks detect in SQL procedures [1]. We

14

also show that our analysis identifies known anomalies
(write-skew) in simple acyclic dynamic data structures
and illustrate the procedure on an ordered singly linked
list implementation. We also propose an enhancement to
the algorithm that uses a compatibility relation between
dependencies to reduce the number of false positives in-
troduced by the static analysis. We foresee that other
techniques, such as using information from the type sys-
tem, can also be used to further reduce the presence of
false-positives.

Looking at the short term evolution of our framework,
we plan to extend the shape graph model to include data
structures with backward pointers, and enable the auto-
matic correction of SI anomalies by source code trans-
formation. In the long term, we aim at extending the
correctness guarantees provided by our analysis to sup-
port further studies of SI in the STM setting, such as with
distributed transactional memory.

References

[1] M. Alomari, M. Cahill, A. Fekete, and U. Röhm.
The cost of serializability on platforms that use
snapshot isolation. In ICDE ’08: Proceedings
of the 2008 IEEE 24th International Conference
on Data Engineering, pages 576–585, Washington,
DC, USA, 2008. IEEE Computer Society.

[2] H. Berenson, P. Bernstein, J. N. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In SIGMOD ’95: Proceedings of
the 1995 ACM SIGMOD international conference
on Management of data, pages 1–10, New York,
NY, USA, 1995. ACM.

[3] E. Duesterwald and M. L. Soffa. Concurrency anal-
ysis in the presence of procedures using a data-flow
framework. In TAV4: Proceedings of the sympo-
sium on testing, analysis, and verification, pages
36–48, New York, NY, USA, 1991. ACM.

[4] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528, 2005.

[5] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for
dynamic-sized data structures. In PODC ’03: Pro-
ceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 92–
101, New York, NY, USA, 2003. ACM.

[6] S. Jorwekar, A. Fekete, K. Ramamritham, and
S. Sudarshan. Automating the detection of snap-
shot isolation anomalies. In VLDB ’07: Proceed-
ings of the 33rd international conference on Very
large data bases, pages 1263–1274, Vienna, Aus-
tria, 2007. VLDB Endowment.

[7] F. Nielson, H. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, 1999.

[8] N. Nystrom, M. R. Clarkson, and A. C. Myers.
Polyglot: An extensible compiler framework for
Java. Technical Report TR2002-1883, Cornell Uni-
versity, Nov. 2002.

[9] T. Riegel, C. Fetzer, and P. Felber. Snapshot
isolation for software transactional memory. In
TRANSACT’06: First ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for
Transactional Computing, Ottawa, Canada, June
2006.

[10] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive up-
dating. ACM Trans. Program. Lang. Syst., 20(1):1–
50, 1998.

[11] N. Shavit and D. Touitou. Software transactional
memory. In PODC ’95: Proceedings of the four-
teenth annual ACM symposium on Principles of
distributed computing, pages 204–213, New York,
NY, USA, 1995. ACM.

[12] Transaction Processing Performance Council.
TPC-C Benchmark, Standard Specification,
Revision 5.11. Feb. 2010.

15

