
Preventing Atomicity Violations with Contracts
Universidade NOVA de Lisboa — Technical Report

Diogo G. Sousa João M. Lourenço Carla Ferreira Ricardo Dias

Abstract—Software developers are expected to synchronize
concurrent accesses to shared regions of memory with some
mutual exclusion primitive that ensures atomicity properties
to a sequence of program statements. This approach prevents
data races but may fail to provide all necessary correctness
properties, potentially leaving atomicity violations unaddressed.
The composition of atomic operations may cause these atomicity
violations if there is a correlation between them. To avoid this the
operations should be grouped in a larger atomic scope to ensure
their correct execution. This problem is especially common when
using services provided by third party packages or modules,
since the programmer may fail to identify which services are
correlated. Developers of a module can specifying a contract that
identifies which methods are correlated and must be executed
in the same atomic scope, reducing the program errors due to
atomicity violations. If a contract is complete and the program
respects it then the program is safe from atomicity violations
with respect to the contract’s module. This work presents a static
analysis based methodology to verify such contracts.

I. INTRODUCTION

The encapsulation of a set of functionalities as services
of a software module offers strong advantages in software
development, since it promotes the reuse of code and ease
maintenance efforts. If the programmer is unacquainted with
the implementation details of a particular services, she may fail
to identify correlations that exist across the services, such as
data and code dependencies, leading to a inappropriate usage.
This is particularly relevant in a concurrent setting, where it
is hard to account for all the possible interleavings between
threads and the effects of these interleaved calls to the module.

One of the requirements for the correct behavior of a module
is to respect its protocol, which defines the legal sequences of
invocations to its methods. For instance, a module that offers
an abstraction to deal with files typically will demand that the
programmer start by calling the method open(), followed by
an arbitrary number of read() or write() operations, and
concluding with a call to close(). A program that does not
follow this protocol is incorrect and should be fixed. A way
to force the programmer to conform to such a protocol is to
use the design by contract methodology [1] to design contracts
that specifies the module usage protocol. In this setting, the
contract not only serves as useful documentation, but can also
be automatically verified, ensuring the client’s program obeys
the module’s protocol [2], [3].

The development of concurrent programs brings new chal-
lenges on how to define the protocol of a module. Not only
it is important to respect the module’s protocol, but is also
necessary to guarantee the atomic execution of sequences

void schedule() {
Task t=taskQueue.next();

if (t.isReady())
t.run();

}

Fig. 1. Program with an atomicity violation.

of calls that are susceptible of causing atomicity violations.
These atomicity violations are possible, even when the mod-
ule’s methods are protected by some concurrency control
mechanism. Figure 1 shows part of a program that schedules
tasks. The schedule() method gets a task, verifies if it is
ready to run, and execute it if so. This program contains a
potential atomicity violation since the method may execute
a task that is not marked as ready. This can happens when
another thread concurrently schedules the same task, despite
the fact the methods of Task are atomic. In this case the
isReady() and run() methods should be executed in the
same atomic context to avoid atomicity violations. Atomicity
violations are one of the most common source of bugs in
concurrent programming [4] and are particularly susceptible
to occur when composing calls to a module, as the developer
may not be aware of the implementation and internal state of
the module.

In this paper we propose to extend module usage protocols
with a specification of the sequences of calls that should be
executed atomically. We will also present an efficient static
analysis to verify these protocols.

The contributions of this paper can be summarized as:
1) A static analysis methodology to extract the behavior of

a program with respect to the sequence of calls it may
execute;

2) A static analysis to verify if a program conforms to a
module’s contract, hence that the module’s correlated
services are correctly invoked in the scope of an atomic
region.

The remaining of this paper is organized as follows. In
Section II we provide a specification and the semantics for
the contract. Section III contains the general methodology of
the analysis. Section IV presents the phase of the analysis that
extracts the behavior of the client program while Section V
shows how to verify a contract based on the extracted informa-
tion. Section VIII follows with the presentation and discussion
of the results of our experimental validation. The related work



is presented in Section IX, and we conclude with the final
remarks in Section X.

II. CONTRACT SPECIFICATION

The contract of a module must specify which sequences of
calls of its non-private methods must be executed atomically,
as to avoid atomicity violations in the module’s client
program. In the spirit of the programming by contract
methodology, we assume the definition of the contract,
including the identification of the sequences of methods
that should be executed atomically is a responsibility of the
module’s developer.

Definition 1 (Contract). The contract of a module with public
methods m1, · · ·,mn is of the form,

1. e1

2. e2
...

k. ek.

where each clause i is described by ei, a star-free regular
expression over the alphabet {m1, · · ·,mn}. Star-free regular
expressions are regular expressions without the Kleene star,
using only the alternative (|) and the (implicit) concatenation
operators.

Each sequence defined in ei must be executed atomically by
the program using the module, otherwise there is a violation
of the contract. The contract specifies a finite number of
sequences of calls, since it is the union of star-free languages.
Therefore, it is possible to have the same expressivity by
explicitly enumerating all sequences of calls, i.e., without
using the alternative operator. We chose to offer the alternative
operator so the programmer can group similar scenarios under
the same clause. Our verification analysis assumes the contract
defines a finite number of call sequences.

Example Consider the array implementation offered
by Java standard library, java.util.ArrayList.
For simplicity we will only consider the methods
add(obj), contains(obj), indexOf(obj), get(idx),
set(idx, obj), remove(idx), and size().

The following contract defines some of the clauses for this
class.

1. contains indexOf

2. indexOf (remove | set | get)

3. size (remove | set | get)

4. add indexOf.

Clause 1 of ArrayList’s contract denotes the execution
of contains() followed by indexOf() should be atomic,
otherwise the client program may confirm the existence of
an object in the array, but fail to obtain its index due to a
concurrent modification. Clause 2 represents a similar scenario

where, in addition, the position of the object is modified. In
clause 3 we deal with the common situation where the program
verifies if a given index is valid before accessing the array.
To make sure the size obtained by size() is valid when
accessing the array we should execute these calls atomically.
Clause 4 represents scenarios where an object is added to the
array and then the program tries to obtain information about
that object by querying the array.

Another relevant clause is
contains indexOf (set | remove), but the contract’s
semantic already enforces the atomicity of this clause as a
consequence of the composition of clauses 1 and 2, as they
overlap in the indexOf() method.

III. METHODOLOGY

The proposed analysis verifies statically if a client program
complies with the contract of a given module, as defined
in Section II. This is achieved by verifying that the threads
launched by the program always execute atomically the
sequence of calls defined by the contract.

This analysis has the following phases:
1) Determine the entry methods of each thread launched

by the program.
2) Determine which of the program’s methods are atom-

ically executed. We say that a method is atomically
executed if it is atomic1 or if the method is always called
by atomically executed methods.

3) Extract the behavior of each of the program’s threads
with respect to the usage of the module under analysis.

4) For each thread, verify that its usage of the module
respects the contract as defined in Section II.

In Section IV we introduce the algorithm that extracts
the program’s behavior with respect to the module’s usage.
Section V defines the methodology that verifies whether the
extracted behavior complies to the contract.

IV. EXTRACTING THE BEHAVIOR OF A PROGRAM

The behavior of the program with respect to the module
usage can be seen as the individual behavior of any thread
the program may launch. The usage of a module by a thread
t of a program can be described by a language L over the
alphabet m1, · · ·, mn, the public methods of the module. A
word m1 · · · mn ∈ L if some execution of t may run the
sequence of calls m1, · · ·,mn to the module.

To extract the usage of a module by a program, our analysis
generates a context-free grammar that represents the language
L of a thread t of the client program, which is represented
by its control flow graph (CFG) [5]. The CFG of the thread t
represents every possible path the control flow may take during
its execution. In other words, the analysis generates a grammar
Gt such that, if there is an execution path of t that runs the
sequence of calls m1, · · ·,mn, then m1 · · · mn ∈ L(Gt). (The
language represented by a grammar G is denoted by L(G).)

1An atomic method is a method that explicitly applies a concurrency control
mechanism to enforce atomicity.



A context-free grammar is especially suitable to capture the
structure of the CFG since it easily captures the call relations
between methods that cannot be captured by a weaker class
of languages such as regular languages. The first example
bellow will show how this is done. Another advantage of using
context-free grammars (as opposed to another static analysis
technique) is that we can use efficient algorithms for parsing
to explore the language it represents.

Definition 2 (Program’s Thread Behavior Grammar). The
grammar Gt = (N,Σ, P, S) is build from the CFG of the
client’s program thread t.

We define,
• N , the set of non-terminals, as the set of nodes of the

CFG. Additionally we add non-terminals that represent
each method of the client’s program (represented in
calligraphic font);

• Σ, the set of terminals, as the set of identifiers of the
public methods of the module under analysis (represented
in bold);

• P , the set of productions, as described bellow, by rules 1–
5;

• S, the grammar initial symbol, as the non-terminal that
represents the entry method of the thread t.

For each method f() that thread t may run we add to
P the productions respecting the rules 1–5. Method f() is
represented by F . A CFG node is denoted by α : JvK, where α
is the non-terminal that represents the node and v its type. We
distinguish the following types of nodes: entry, the entry node
of method F ; mod.h(), a call to method h() of the module
mod under analysis; g(), a call to another method g() of the
client program; and return, the return point of method F . The
succ : N → P(N) function is used to obtain the successors
of a given CFG node.

if α : JentryK, {F → α} ∪ {α→ β | β ∈ succ(α)} ⊂ P
(1)

if α : Jmod.h()K, {α→ hβ | β ∈ succ(α)} ⊂ P (2)
if α : Jg()K, {α→ G β | β ∈ succ(α)} ⊂ P

where G represents g() (3)
if α : JreturnK, {α→ ε} ⊂ P (4)

if α : JotherwiseK, {α→ β | β ∈ succ(α)} ⊂ P (5)

No more productions belong to P .

Rules 1–5 capture the structure of the CFG in the form of a
context-free grammar. Intuitively this grammar represents the
flow control of the thread t of the program, ignoring everything
not related with the module’s usage. For example, if f g ∈
L(Gt) then the thread t may invoke, method f(), followed
by g().

Rule 1 adds a production that relates the non-terminal F ,
representing method f(), to the entry node of the CFG of
f(). Calls to the module under analysis are recorded in the
grammar by the Rule 2. Rule 3 handles calls to another method

g() of the client program (method g() will have its non-
terminal G added by Rule 1). The return point of a method
adds an ε production to the grammar (Rule 4). All others
types of CFG nodes are handled uniformly, preserving the
CFG structure by making them reducible to the successor non-
terminals (Rule 5). Notice that only the client program code
is analyzed.

The Gt grammar may be ambiguous, i.e., offer several
different derivations to the same word. Each ambiguity in
the parsing of a sequence of calls m1 · · · mn ∈ L(Gt)
represents different contexts where these calls can be executed
by thread t. Therefore we need to allow such ambiguities
so that the verification of the contract can cover all the
occurrences of the sequences of calls in the client program.

The language L(Gt) contains every sequence of calls the
program may execute, i.e., it produces no false negatives.
However L(Gt) may contain sequences of calls the program
does not execute (for instance calls performed inside a block of
code that is never executed), which may lead to false positives.

Examples Figure 2 (left) shows a program that consists of
two methods that call each other mutually. Method f() is the
entry point of the thread and the module under analysis is rep-
resented by object m. The control flow graphs of these methods
are shown in Figure 2 (right). According to Definition 2, we
construct the grammar G1 = (N1,Σ1, P1, S1), where

N1 = {F ,G, A,B,C,D,E, F,G,H, I, J,K,L,M},
Σ1 = {a,b, c,d},
S1 = F ,

and P1 has the following productions:

F → A G → G

A→ B H → c I

B → aC I → J |M
C → D | E J → GK
D → G E K → dL

E → bF L→ FM
F → ε M → ε.

A second example, shown in Figure 3, exemplifies how the
Definition 2 handles a flow control with loops. In this example
we have a single function f(), which is assumed to be the
entry point of the thread. We have G2 = (N2,Σ2, P2, S2),
with

N2 = {F , A,B,C,D,E, F,G,H},
Σ2 = {a,b, c,d},
S2 = F .



void f() {
m.a();
if (cond)

g();
m.b();

}

void g() {
m.c();
if (cond) {

g();
m.d();
f();

}
}

f() g()

entry

m.a()

cond

g()

m.b()

return

A

B

C

D

E

F

entry

m.c()

cond

g()

m.d()

f()

return

G

H

I

J

K

L

M

Fig. 2. Program with recursive calls using the module m (left) and respective CFG (right).

void f() {
while (m.a()) {

if (cond)
m.b();

else
m.c();

count++;
}

m.d();
}

entry

m.a()

cond

m.b() m.c()

count++

m.d()

return

A

B

C

D E

F

G

H

Fig. 3. Program using the module m (left) and respective CFG (right).

The set of productions P2 is,

F → A E → cF

A→ B F → B

B → aC | aG G→ dH

C → D | E H → ε

D → bF.

V. CONTRACT VERIFICATION

The verification of a contract must ensure all sequences of
calls specified by the contract are executed atomically by all
threads the client program may launch. Since there is a finite
number of call sequences defined by the contract we can verify
each of these sequences to check if the contract is respected.

The idea of the algorithm is to generate a grammar the
captures the behavior of each thread with respect to the module
usage. Any sequence of the calls contained in the contract
can then be found by parsing the word (i.e. the sequence of
calls) in that grammar. This will create a parsing tree for each
place where the thread can execute that sequence of calls. The
parsing tree can then be inspected to determine the atomicity
of the sequence of calls discovered.

Algorithm 1 presents the pseudo-code of the algorithm
that verifies a contract against a client’s program. For each
thread t of a program P , it is necessary to determine if
(and where) any of the sequences of calls defined by the
contract w = m1, · · ·,mn occur in P (line 4). To do so,
each of the these sequences are parsed in the grammar G′t



Algorithm 1 Contract verification algorithm.
Require: P , client’s program;

C, module contract (set of allowed sequences).
1: for t ∈ threads(P ) do
2: Gt ← make grammar(t)
3: G′t ← subword grammar(Gt)
4: for w ∈ C do
5: T ← parse(G′t, w)
6: for τ ∈ T do
7: N ← lowest common ancestor(τ, w)
8: if ¬run atomically(N) then
9: return ERROR

10: return OK

(line 5) that includes all words and sub-words of Gt. Sub-
words must be included since we want to take into account
partial traces of the execution of thread t, i.e., if we have a
program m.a(); m.b(); m.c(); m.d(); we are able to
verify the word b c by parsing it in G′t. Notice that G′t may
be ambiguous. Each different parsing tree represents different
locations where the sequence of calls m1, · · ·,mn may occur
in thread t. Function parse() returns the set of these
parsing trees. Each parsing tree contains information about
the location of each methods call of m1, · · ·,mn in program
P (since non-terminals represent CFG nodes). Additionally,
by going upwards in the parsing tree, we can find the node
that represents the method under which all calls to m1, · · ·,mn

are performed. This node is the lowest common ancestor of
terminals m1, · · ·,mn in the parsing tree (line 7). Therefore
we have to check the lowest common ancestor is always
executed atomically (line 8) to make sure the whole sequence
of calls is executed under the same atomic context. Since it
is the lowest common ancestor we are sure to require the
minimal synchronization from the program. A parsing tree
contains information about the location in the program where
a contract violation may occur, therefore we can offer detailed
instructions to the programmer on where this violation occurs
and how to fix it.

Grammar Gt can use all the expressivity offered by context-
free languages. For this reason it is not sufficient to use
the LR(·) parsing algorithm [6], since it does not handle
ambiguous grammars. To deal with the full class of context-
free languages a GLR parser (Generalized LR parser) must
be used. GLR parsers explore all the ambiguities that can
generate different derivation trees for a word. A GLR parser
was introduced by Tomita in [7]. Tomita presents a non-
deterministic versions of the LR(0) parsing algorithm with
some optimizations in the representation of the parsing stack
that improve the temporal and spacial complexity of the
parsing phase.

Another important point is that the number of parsing trees
may be infinite. This is due to loops in the grammar, i.e.,
derivations from a non-terminal to itself (A ⇒ · · · ⇒ A),
which often occur in Gt (every loop in the control flow graph
will yield a corresponding loop in the grammar). For this

void run() {
if (...)

f();
else {

m.a();
g();

}
}

void atomic f() {
m.a();
g();

}

void atomic g() {
m.b();

}

R → a G | F
F → a G
G → b

a b

G

R

F

a b

G

R

Fig. 5. Program (left), simplified grammar (center) and parsing tree of a b
(right).

reason the parsing algorithm must detect and prune parsing
branches that will lead to redundant loops, ensuring a finite
number of parsing trees is returned. To achieve this the parsing
algorithm must detect a loop in the list of reduction it has
applied in the current parsing branch, and abort it if that loop
did not contribute to parse a new terminal.

Examples Figure 4 shows a program (left), that uses the
module m. The method run() is the entry point of the thread t
and is atomic. In the center of the figure we shown a simplified
version of the Gt grammar. (The G′t grammar is not shown
for the sake of brevity.) The run(), f(), and g() methods
are represented in the grammar by the non-terminals R, F ,
and G respectively. If we apply Algorithm 1 to this program
with the contract C = {a b b c} the resulting parsing tree,
denoted by τ (line 6 of Algorithm 1), is represented in
Figure 4 (right). To verify all calls represented in this tree
are executed atomically, the algorithm determines the lowest
common ancestor of a b b c in the parsing tree (line 7), in this
example R. Since R is always executed atomically (atomic
keyword), it complies to the contract of the module.

Figure 5 exemplifies a situation where the generated gram-
mar is ambiguous. In this case the contract is C = {a b}.
The figure shows the two distinct ways to parse the word a b
(right). Both these trees will be obtained by our verification
algorithm (line 5 of Algorithm 1). The first tree (top) has F
as the lowest common ancestor of a b. Since F corresponds
to the method f(), which is executed atomically, so this
tree respects the contract. The second tree (bottom) has R
as the lowest common ancestor of a b, corresponding to the
execution of the else branch of method run(). This non-
terminal (R) does not correspond to an atomically executed
method, therefore the contract is not met and a contract
violation is detected.



void atomic run() {
f();
m.c();

}

void f() {
m.a();
g();

}

void g() {
while (cond)

m.b();
}

R → F c

F → a G
G → A

A→ B | ε
B → b A

a b b c

B

A

A

ε

G

A

B

F

R

Fig. 4. Program (left), simplified grammar (center) and parsing tree of a b b c (right).

Algorithm 2 Contract verification algorithm with points-to
information.
Require: P , client’s program;

C, module contract (set of allowed sequences).
1: for t ∈ threads(P ) do
2: for a ∈ mod alloc sites(t) do
3: Gta ← make grammar(t, a)
4: G′ta ← subword grammar(Gta)
5: for w ∈ C do
6: T ← parse(G′ta , w)
7: for τ ∈ T do
8: N ← lowest common ancestor(τ, w)
9: if ¬run atomically(N) then

10: return ERROR
11: return OK

VI. ANALYSIS WITH POINTS-TO

In an object-oriented programming language the module
is often represented as an object, in which case we should
differentiate the instances of the class of the module. This sec-
tion explains how the analysis is extended to handle multiple
instances of the module by using points-to information.

To extend the analysis to points-to a different grammar
is generated for each allocation site of the module. Each
allocation site represents an instance of the module, and the
verification algorithm verifies the contract words for each
allocation site and thread (whereas the previous algorithm
verified the contract words for each thread). The new algorithm
is shown in Algorithm 2. It generated the grammar Gta for a
thread t and module instance a. This grammar can be seen as
the behavior of thread t with respect to the module instance
a, ignoring every other instance of the module.

To generate the grammar Gta we adapt the Definition 2 to
only take into account the instance a. The grammar generation
is extended in the following way:

Definition 3 (Program’s Thread Behavior Grammar with
points-to). The grammar Gt = (N,Σ, P, S) is build from the

CFG of the client’s program thread t and an object allocation
site a, which represents an instance of the module.

We define N , Σ, P and S in the same way as Definition 2.
The rules remain the same, except for rule 2, which be-

comes:

if α : Jmod.h()K and mod can only point to a (6)
{α→ hβ | β ∈ succ(α)} ⊂ P

if α : Jmod.h()K and mod can point to a (7)
{α→ hβ | β ∈ succ(α)} ⊂ P
{α→ β | β ∈ succ(α)} ⊂ P

if α : Jmod.h()K and mod cannot point to a (8)
{α→ β | β ∈ succ(α)} ⊂ P

Here we use the points-to information to generate the gram-
mar, and we should consider the places where a variable can
point-to. If it may point-to our instance a or another instance
we consider both possibilities in the Rule 7 of Definition 3.

VII. PROTOTYPE

A prototype was implemented to evaluate our methodology.
This tool analyses Java programs using Soot [8], a Java static
analysis framework. This framework directly analyses Java
bytecode, allowing us to analyse a compiled program, without
requiring access to its source code. In our implementation
a method can be marked atomic with a Java annotation.
The contract is also defined as an annotation of the class
representing the module under analysis. The prototype is
available in https://github.com/trxsys/gluon.

A. Optimizations

To achieve a reasonable time performance we implemented
a few optimizations. Some of these optimizations reduced the
analysis run time by a few orders of magnitude in some cases,
without sacrificing precision.

A simple optimization was applied to the grammar to reduce
its size. When constructing the grammar, most control flow

https://github.com/trxsys/gluon


graph nodes will have a single successor. Rule 5 (Definition 2)
will always be applied to these kind of nodes, since they
represent an instruction that does not call any function. This
creates redundant ambiguities in the grammar due to the
multiple control flow paths that never use the module under
analysis. To avoid exploration of redundant parsing branches
we rewrite the grammar to transform productions of the form
A → βBδ, B → α to A → βαδ, if no other rule with
head B exists. For example, an if else that do not use the
module will create the productions A → B, A → C, B →
D, C → D. This transformation will reduce it to A → D,
leaving no ambiguity for the parser to explore here. This
optimization reduced the analysis time by at least one order of
magnitude considering the majority of the tests we performed.
For instance, the Elevator test could not be analyzed in a
reasonable time prior to this optimization.

Another optimization was applied during the parsing phase.
Since the GLR parser builds the derivation tree bottom-up we
can be sure to find the lowest common ancestor of the termi-
nals as early as possible. The lowest common ancestors will
be the first non-terminal in the tree covering all the terminals
of the parse tree. This is easily determined if we propagate,
bottom-up, the number of terminals each node of the tree
covers. Whenever a lowest common ancestor is determined we
do not need further parsing and can immediately verify if the
corresponding calls are in the same atomic context. This avoids
completing the rest of the tree which can contain ambiguities,
therefore a possibly large number of new branches is avoided.

Another key aspect of the parsing algorithm implementation
is the loop detection. To achieve a good performance we
should prune parsing branches that generated unproductive
loop as soon as possible. Our implementation guarantees
the same non-terminal never appears twice in a parsing tree
without contributing to the recognition of a new terminal.

To achieve a better performance we also do not explicitly
compute the subword grammar (G′t). We have modified our
GLR parser to parse subwords as described in [9]. This
greatly improves the parser performance because constructing
G′t introduces many irrelevant ambiguities the parser had to
explore.

The Table I show how much the of the optimizations
improve the analysis performance. These results are build from
an test made to stress the performance of gluon but is consis-
tent with real applications. The Improvement column show
how much of an improvement that particular optimization
contributes to the analysis. The Stop Parsing at LCA cause
an improvement that we were not able to measure since the
test was unable to complete in reasonable time.

B. Class Scope Mode

Gluon normally analyzes the entire program, taking into
account any sequence of calls that can spread across the whole
program (as long as they are consecutive calls to a module).
However this is infeasible for very large programs so, for these
programs, we ran the analysis with for each class, ignoring
calls to other classes. This will detect contract violations where

void replace(int o, int n)
{

if (array.contains(o))
{

int idx=array.indexOf(o);
array.set(idx,n);

}
}

Fig. 6. Examples of atomic violation with data dependencies.

the control flow does not escape the class, which is reasonable
since code locality indicates a stronger correlations between
calls.

This mode of operation can be useful to analyze large
programs as they might have very complex control flow graphs
and thus are infeasible to analyze with the scope of the whole
program.

In this mode the grammar is build for each class instead of
each thread. The methods of the class will create non-terminals
F1, · · ·,Fn, just as before. The only change in creating this
grammar is that we create the productions S → F1 | · · · | Fn

as the starting production of the grammar (S being the initial
symbol). This means that we consider the execution of all
methods of the class being analyzed.

C. Contracts with Parameters

Frequently contract clauses can be refined by considering
the flow of data across calls to the module. For instance
Listing 6 shows a procedure that replaces an item in an array
by another. This listing contains two atomicity violations: the
element might not exist when indexOf() is called; and the
index obtained might be outdated when set() is executed.
Naturally, we can define a clause that forces the atomicity
of this sequence of calls as contains indexOf set, but
this can be substantially refined by explicitly require that a
correlation exists between the indexOf() and set() calls.
To do so we extend the contract specification to capture the
arguments and return values of the calls, which allows the user
to establish the relation of values across calls.

The contract can therefore be extended to accommodate this
relations, in this case the clause might be

contains(X) Y=indexOf(X) set(Y,_).

This clause contains variables (X,Y) that must satisfy unifi-
cation for the clause to be applicable. The underscore symbol
(_) represents a variable that will not be used (and therefore
requires no binding). Algorithm 1 can easily be modified to
filter out the parsing trees that correspond to calls that do not
satisfy the unification required by the clause in question.

In our implementation we require a exact match between the
terms of the program to satisfy the unification, since it was
sufficient for most scenarios. It can however be advantageous
to generalize the unification relation. For example, the calls

array.contains(o);
idx=array.indexOf(o+1);



TABLE I
OPTIMIZATION IMPROVEMENTS.

Optimization Improvement

Grammar Simplification 428%
Stop Parsing at LCA ?
Subword Parser 3%

array.set(idx,n);

also imply a data dependency between the first two calls. We
should say that A unifies with B if, and only if, the value of
A depends on the value of B, which can occur due to value
manipulation (data dependency) or control-flow dependency
(control dependency). This can be obtained by an information
flow analysis, such as presented in [10], which can statically
infer the variables that influenced the value that a variable hold
on a specific part of the program.

This extension of the analysis can be a great advantage for
some types of modules. As an example we rewrite the contract
for the Java standard library class, java.util.ArrayList,
presented in Section II:

1. contains(X) indexOf(X)

2. X=indexOf(_) (remove(X) | set(X,_) | get(X))

3. X=size() (remove(X) | set(X,_) | get(X))

4. add(X) indexOf(X).

This contract captures in detail the relations between calls
that may be problematic, and excludes from the contract
sequences of calls that does not constitute atomicity violations.

D. ICFinder
ICFinder tries to infer automatically what a module is, and

incorrect compositions of pairs of calls to modules.
Two patterns are used to detect potencial atomicity viola-

tions in method calls compositions:
• USE: Detects stale value errors. This pattern detects data

or control flow dependencies between two calls to the
module.

• COMP: If a call to method a() dominates b() and b()

post-dominates a() in some place, that is captured by this
pattern. This means that, for each piece of code involving
two calls to the module (a() and b()), if a() is always
executed before b() and b() is always executed after
a(), it is a COMP violation.

Both this patterns are extremely broad and contain many
false positives. To deal with this the authors filter this results
with a dynamic analysis that only consider violations as
defined in [11]. This analysis assumes that the notion of atomic
set was correctly inferred by ICFinder.

VIII. VALIDATION

To validate the proposed analysis we analyzed a few real-
world programs (Tomcat, Lucene, Derby, OpenJMS and Cas-
sandra) as well as small programs known to contain atom-
icity violations. These small programs were adapted from

the literature [12]–[18] and are typically used to evaluate
atomicity violation detection techniques. We modified these
small programs to employ a modular design and we wrote
contracts to enforce the correct atomic scope of calls to
that module. Some additional clauses were added that may
represent atomicity violations in the context of the module
usage, even if the program do not violate those clauses.

For the large benchmarks analyzed we aimed to discover
new, unknown, atomicity violations. To do so we had to create
contracts in an automated manner, since the code base was
too large. To automate the generation of contracts we employ
a very simplistic approach that tries to infer the contract’s
clauses based on what is already synchronized in the code.
This idea is that most sequences of calls that should be
atomic was correctly used somewhere. Having this in mind
we look for sequences of calls done to a module that are used
atomically at least two points of the program. If a sequence of
calls is done atomically in two places of the code that might
indicate that these calls are correlated and should be atomic.
We used these sequences as our contracts, after manually
filtering a few irrelevant contracts. This is a very simple way
to generate contracts, which should ideally be written by the
module’s developer to capture common cases of atomicity
violations, so we can expect the contracts to be more fine-
tuned to better target atomicity violations if the contracts are
part of the regular project development.

Since these programs load classes dynamically it is im-
possible to obtain complete points-to information, so we are
pessimistic and assumed every module instance could be
referenced by any variable that are type-compatible. We also
used the class scope mode described in Section VII-B because
it would be impractical to analyze such large programs with
the scope of the whole program. This restrictions did not apply
to the small programs analyzed.

Table II summarizes the results that validate the correct-
ness of our approach. The table contains both the macro
benchmarks (above) and the micro benchmarks (bellow). The
columns represent the number of clauses of the contract
(Clauses); the number of violations of those clauses (Contract
Violations); the number of false positives, i.e. sequences
of calls that in fact the program will never execute (False
Positives); the number of potential atomicity violations, i.e.
atomicity violations that could happen if the object was
concurrently accessed by multiple threads (Potential AV); the
number of real atomicity violations that can in fact occur and
compromise the correct execution of the program (Real AV);
the number lines of code of the benchmark (SLOC); and the



TABLE II
VALIDATION RESULTS.

Benchmark Clauses Contract Violations False Positives Potential AV Real AV SLOC Time (s) ICFinder Static ICFinder Final

Allocate Vector [16] 1 1 0 0 1 183 0.120 - -
Coord03 [13] 4 1 0 0 1 151 0.093 - -
Coord04 [14] 2 1 0 0 1 35 0.039 - -
Jigsaw [12] 1 1 0 0 1 100 0.044 121 2
Local [13] 2 1 0 0 1 24 0.033 - -
Knight [15] 1 1 0 0 1 135 0.219 - -
NASA [13] 1 1 0 0 1 89 0.035 - -
Store [17] 1 1 0 0 1 621 0.090 - -
StringBuffer [14] 1 1 0 0 1 27 0.032 - -
UnderReporting [12] 1 1 0 0 1 20 0.029 - -
VectorFail [17] 2 1 0 0 1 70 0.048 - -
Account [12] 4 2 0 0 2 42 0.041 - -
Arithmetic DB [15] 2 2 0 0 2 243 0.272 - -
Connection [18] 2 2 0 0 2 74 0.058 - -
Elevator [12] 2 2 0 0 2 268 0.333 - -

OpenJMS 0.7 6 54 10 28 4 163K 148 126 15
Tomcat 6.0 9 157 16 47 3 239K 3070 365 12
Cassandra 2.0 1 60 24 15 2 192K 246 - -
Derby 10.10 1 19 5 7 1 793K 522 122 16
Lucene 4.6 3 136 21 76 0 478K 151 391 2

time it took for the analysis to complete (the analysis run time
excludes the Soot initialization time, which were always less
than 179s per run).

Our tool was able to detect all violation of the contract by
the client program in the microbenchmarks, so no false nega-
tives occurred, which supports the soundness of the analysis.
Since some tests include additional contract clauses with call
sequences not present in the test programs we also show that,
in general, the analysis does not detect spurious violations,
i.e., false positives.2 A corrected version of each test was also
verified and the prototype correctly detected that all contract’s
call sequences in the client program were now atomically
executed. Correcting a program is trivial since the prototype
pinpoints the methods that must be made atomic, and ensures
the synchronization required has the finest possible scope,
since it is the method that corresponds to the lowest common
ancestor of the terminals in the parse tree.

The large benchmarks show that gluon can be applied to
large scale programs with good results. Even with a simple
automated contract generation we were able to detect 10
atomicity violations in real-world programs. Some of those
bugs where reported (Tomcat, Derby, Cassandra). The false
positives incorrectly reported by gluon were all due to conser-
vative points-to information, since the program loads and calls
classes and methods dynamically (leading to an incomplete
points-to graph).

ICFinder [19] uses a static analysis to detect two types of
common incorrect composition patterns. This is then filtered
with a dynamic analysis. Of the atomicity violations detected
by gluon none of them was captured by ICFinder, since they
failed to match the definition of the patterns.

The performance results show our tool can run efficiently.
For larger programs we have to use class scope mode, sac-
rificing precision for performance, but we still can capture

2In these tests no false positives were detected. However it is possible
to create situations where false positives occur. For instance, the analysis
assumes a loop may iterate an arbitrary number of times, which makes it
consider execution traces that may not be possible.

interesting contract violations. The performance of the analysis
depends greatly on the number of branches the parser explores.
This high number of parsing branches is due to the complexity
of the control flow of the program, offering a huge amount of
distinct control flow paths. In general the parsing phase will
dominate the time complexity of the analysis, so the analysis
run time will be proportional to the number of explored parsing
branches. Memory usage is not a problem for the analysis,
since the asymptotic space complexity is determined by the
size of the parsing table and the largest parsing tree. Memory
usage is not affected by the number of parsing trees because
our GLR parser explores the parsing branches in-depth instead
of in-breadth. In-depth exploration is possible because we
never have infinite height parsing trees due to our detection of
unproductive loops.

IX. RELATED WORK

The methodology of design by contract was introduced by
Meyer [1] as a technique to write robust code, based on
contracts between programs and objects. In this context, a
contract specifies the necessary conditions the program must
met in order to call the object’s methods, whose semantics is
ensured if those pre-conditions are met.

Cheon et al. proposes the use of contracts to specify
protocols for accessing objects [2]. These contracts use regular
expressions to describe the sequences of calls that can be exe-
cuted for a given Java object. The authors present a dynamic
analysis for the verification of the contracts. This contrasts
to our analysis which statically validates the contracts. Beck-
man et al. introduce a methodology based on typestate that
statically verifies if a protocol of an object is respected [18].
This approach requires the programmer to explicitly unpack
objects before it can be used. Hurlin [3] extends the work
of Cheon to support protocols in concurrent scenarios. The
protocol specification is extended with operators that allow
methods to be executed concurrently, and pre-conditions that
have to be satisfied before the execution of a method. This
analysis is statically verified by a theorem prover. Theorem

https://issues.apache.org/bugzilla/show_bug.cgi?id=56784
https://issues.apache.org/jira/browse/DERBY-6679
https://issues.apache.org/jira/browse/CASSANDRA-7757


proving, in general, is very limited since automated theorem
proving tend to be inefficient.

Peng Liu et al. developed a way to detect atomicity vi-
olations caused by method composition [19], much like the
ones we describe in this article. They define two patterns that
are likely to cause atomicity violations, one capturing stale
value errors and the other one by trying to infer a correlation
between method calls by analyzing the control flow graph (if
a() is executed before b() and b() is executed after a()).
This patterns are captured statically and then filtered with a
dynamic analysis.

Many works can be found about atomicity violations. Artho
et al. in [13] define the notion of high-level data races, that
characterize sequences of atomic operations that should be ex-
ecuted atomically to avoid atomicity violations. The definition
of high-level data races do not totally capture the violations
that may occur in a program. Praun and Gross [12] extend
Artho’s approach to detect potential anomalies in the execution
of methods of an object and increase the precision of the analy-
sis by distinguish between read and write accesses to variables
shared between multiple threads. An additional refinement to
the notion of high-level data races was introduced by Pessanha
in [20], relaxing the properties defined by Artho, which results
in a higher precision of the analysis. Farchi et al. [21] propose
a methodology to detect atomicity violations in the usage
of modules based on the definition of high-level data races.
Another common type of atomicity violations that arise when
sequencing several atomic operations are stale value errors.
This type of anomaly is characterized by the usage of values
obtained atomically across several atomic operations. These
values can be outdated and compromise the correct execution
of the program. Various analysis were developed to detect
these types of anomalies [14], [20], [22]. Several other analysis
to verify atomicity violations can be found in the literature,
based on access patterns to shared variables [11], [15], type
systems [23], semantic invariants [24], and other specific
methodologies [25]–[27].

X. CONCLUDING REMARKS

In this paper we present the problem of atomicity violations
when using a module, even when their methods are individu-
ally synchronized by some concurrency control mechanism.
We propose a solution based on the design by contract
methodology. Our contracts define which call sequences to
a module should be executed in an atomic manner.

We introduce a static analysis to verify these contracts. The
proposed analysis extracts the behavior of the client’s program
with respect to the module usage, and verifies whether the
contract is respected.

A prototype was implemented and the experimental results
shows the analysis is highly precise and can run efficiently on
real-world programs.

XI. ACKNOWLEDGMENTS

This work was partially supported by the Portuguese
national research project PTDC/EIA-EIA/113613/2009
(Synergy-VM).

REFERENCES

[1] B. Meyer, “Applying ”design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, Oct. 1992.

[2] Y. Cheon and A. Perumandla, “Specifying and checking method call
sequences of java programs,” Software Quality Control, vol. 15, no. 1,
pp. 7–25, Mar. 2007.

[3] C. Hurlin, “Specifying and checking protocols of multithreaded classes,”
in Proceedings of the 2009 ACM symposium on Applied Computing, ser.
SAC ’09. New York, NY, USA: ACM, 2009, pp. 587–592.

[4] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
SIGPLAN Not., vol. 43, no. 3, pp. 329–339, Mar. 2008.

[5] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, no. 7,
pp. 1–19, Jul. 1970. [Online]. Available: http://doi.acm.org/10.1145/
390013.808479

[6] D. E. Knuth, “On the translation of languages from left to right,”
Information and control, vol. 8, no. 6, pp. 607–639, 1965.

[7] M. Tomita, “An efficient augmented-context-free parsing algorithm,”
Comput. Linguist., vol. 13, no. 1-2, pp. 31–46, Jan. 1987. [Online].
Available: http://dl.acm.org/citation.cfm?id=26386.26390

[8] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative
research, ser. CASCON ’99. IBM Press, 1999, pp. 13–.

[9] J. Rekers and W. Koorn, “Substring parsing for arbitrary context-free
grammars,” ACM Sigplan Notices, vol. 26, no. 5, pp. 59–66, 1991.

[10] J.-F. Bergeretti and B. A. Carré, “Information-flow and data-flow analy-
sis of while-programs,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 7, no. 1, pp. 37–61, 1985.

[11] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization constraints
with data in an object-oriented language,” in ACM SIGPLAN Notices,
vol. 41, no. 1. ACM, 2006, pp. 334–345.

[12] C. Von Praun and T. Gross, “Static detection of atomicity violations in
object-oriented programs,” Journal of Object Technology, vol. 3, no. 6,
pp. 103–122, 2004.

[13] C. Artho, K. Havelund, and A. Biere, “High-level data races,” Software
Testing, Verification and Reliability, vol. 13, no. 4, pp. 207–227, Dec.
2003.

[14] ——, “Using block-local atomicity to detect stale-value concurrency
errors,” Automated Technology for Verification and Analysis, pp. 150–
164, 2004.

[15] J. Lourenço, D. Sousa, B. Teixeira, and R. Dias, “Detecting concurrency
anomalies in transactional memory programs,” Computer Science and
Information Systems/ComSIS, vol. 8, no. 2, pp. 533–548, 2011.

[16] “IBM’s Concurrency Testing Repository.”
[17] V. Pessanha, “Verificao prtica de anomalias em programas de memria

transaccional (Practical verification of anomalies in transactional mem-
ory programs),” Master’s thesis, Universidade Nova de Lisboa, 2011.

[18] N. E. Beckman, K. Bierhoff, and J. Aldrich, “Verifying correct usage
of atomic blocks and typestate,” SIGPLAN Not., vol. 43, no. 10, pp.
227–244, Oct. 2008.

[19] P. Liu, J. Dolby, and C. Zhang, “Finding incorrect compositions of
atomicity,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ACM, 2013, pp. 158–168.

[20] R. J. Dias, V. Pessanha, and J. M. Loureno, “Precise detection of atom-
icity violations,” in Hardware and Software: Verification and Testing,
ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
Nov. 2012, hVC 2012 Best Paper Award.

[21] E. Farchi, I. Segall, J. a. M. Lourenço, and D. Sousa, “Using program
closures to make an application programming interface (api) implemen-
tation thread safe,” in Proceedings of the 2012 Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging, ser. PADTAD
2012. New York, NY, USA: ACM, 2012, pp. 18–24.

[22] M. Burrows and K. Leino, “Finding stale-value errors in concurrent
programs,” Concurrency and Computation: Practice and Experience,
vol. 16, no. 12, pp. 1161–1172, 2004.

[23] L. Caires and J. a. C. Seco, “The type discipline of behavioral
separation,” SIGPLAN Not., vol. 48, no. 1, pp. 275–286, Jan. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2480359.2429103

[24] R. Demeyer and W. Vanhoof, “A framework for verifying the
application-level race-freeness of concurrent programs,” in 22nd Work-
shop on Logic-based Programming Environments (WLPE 2012), 2012,
p. 10.

http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
http://dl.acm.org/citation.cfm?id=26386.26390
http://doi.acm.org/10.1145/2480359.2429103


[25] C. Flanagan and S. N. Freund, “Atomizer: a dynamic atomicity checker
for multithreaded programs,” SIGPLAN Not., vol. 39, no. 1, pp. 256–
267, Jan. 2004.

[26] C. Flanagan, S. N. Freund, and J. Yi, “Velodrome: a sound and complete
dynamic atomicity checker for multithreaded programs,” SIGPLAN Not.,
vol. 43, no. 6, pp. 293–303, Jun. 2008.

[27] C. Flanagan and S. N. Freund, “FastTrack: efficient and precise dynamic
race detection,” Commun. ACM, vol. 53, no. 11, pp. 93–101, Nov. 2010.


	Introduction
	Contract Specification
	Methodology
	Extracting the Behavior of a Program
	Contract Verification
	Analysis with Points-to
	Prototype
	Optimizations
	Class Scope Mode
	Contracts with Parameters
	ICFinder

	Validation
	Related Work
	Concluding Remarks
	Acknowledgments
	References

