Boosting Locality in Multi-version Partial Data
Replication

Joao A. Silva, Joao M. Lourenco and Hervé Paulino
CITI, Universidade NOVA de Lisboa

jaa.silva@campus.fct.unl.pt {joao.lourenco,herve.paulino}@fct.unl.pt

August, 2014

Abstract

Partial data replication protocols for transactional distributed systems
present a high scalability potential. But they present a shortcoming of
the utmost importance: data locality, i.e., serving transactional reads
locally, avoiding inter-node communication. In this paper we tackle this
problem proposing a generic cache mechanism adaptable to multi-version
partial data replication protocols. We present the design of a generic cache
mechanism and apply it to a specific partial data replication protocol,
namely SCORe. We perform some experimental evaluation in order to
evaluate the effectiveness of the proposed mechanism. The results show
some improvement in the system’s overall throughput in read dominated
workloads.

Keywords: Cache; Multi-version; Partial Data Replication; Concurrency
Control; Distributed Systems

1 Introduction

A popular approach for addressing the requirements of high availability and
scalability in transactional systems is the employment of both data distribution
and replication [3,8,9,17]. Many of the systems that support these strategies
make use of full data replication [3,8,11,12], whereby each node replicates the
entire system’s data. This strategy allows all data accesses to be served locally,
but induces undesirable overheads in large scale systems due to the need of
coordination among all the nodes of the system when propagating updates.

An alternative approach is partial data replication [17,18], whereby each
node replicates only a subset of the system’s data. This strategy still presents
some (configurable) fault tolerance, while achieving high scalability due to its
genuine property, according to which the commitment of a transaction only
involves nodes that replicate data items accessed by the commiting transac-
tion [17].

Although partial replication protocols have the potential for high scalability,
they remain behind due to the high latency when accessing remote data. In
this context of partial replication, where data is distributed among the system’s
nodes and is replicated only by some of them, there will be cases where some

of the nodes need to access data items which are not held in a local copy. In
these situations the only option is to request the required data item from a
remote node that holds a copy of the needed item, which requires inter-node
communication, imposing non-negligible overheads. In other words, unless some
techniques are employed to improve data access locality, the amount of remote
read operations increases with the size of the system, eventually hampering its
performance.

One possible strategy to address the performance penalty of accessing re-
mote data is to minimize inter-node communication by using caching techniques,
which create and manage local copies of frequently accessed remote data items.
Such caching techniques are particularly effective in read dominated workloads.
However, integrating a cache mechanism in a system that makes use of partial
replication and still offers strong consistency guarantees is a challenging task,
as it requires a lightweight consistency algorithm that is able to maintain the
original protocol’s correctness properties while serving read operations based on
the locally cached data.

The caching of remote data items raises two main problems, namely: (i) lever-
aging the caching mechanism to improve the performance of the system shall not
affect it correctness, namely shall not affect the consistency guaranties provided
by the original algorithm; and (ii) the usage of the caching mechanism shall not
have a negative impact in the freshness of the data observed by the transac-
tions, otherwise it will hamper the performance of the system. In this paper, we
address the challenges of designing an efficient cache of remote data applicable
to multi-version partial data replication protocols. Thus, the contributions of
this paper are the following:

(1) we generalize the work of Pimentel et al. [15] by proposing a cache mech-
anism targeted towards replication protocols providing strong consistency
guarantees, like 1-copy-serializability (1CS), and make it malleable to be
used in multi-version partial data replication protocols that use scalar logi-
cal timestamps;

(2) the proposed caching mechanism is generic and may be customized for a
vast set of multi-version partial data replication transactional systems, and
we discuss a concrete implementation for the SCORe protocol [13] when
used on top of REDSTM [?], a distributed transactional memory (DTM)
framework; and

(3) the characterization of which transactional workloads may benefit from the
proposed caching system.

The remaining of this paper is organized as follows. §2 presents our target
system model. Our proposed cache mechanism is discussed in §3. In §4 we
exemplify how this cache mechanism can be applied to a specific partial replica-
tion protocol, namely SCORe [13]. The results of the experimental evaluation
are presented and discussed in §5. §6 discusses related work, and we conclude
this paper with §7.

2 System Model

We consider a classical asynchronous distributed system comprised by II =
{n1,...,ni} nodes. We assume nodes communicate only through message pass-
ing, thus having no access to any kind of shared memory or global clock. Mes-
sages can experience arbitrarily long (but finite) delays and we assume no bound
on the nodes’ computational speed nor on their clocks skews. We consider the
classical crash-stop failure model, whereby nodes can fail by crashing but do not
behave maliciously.

Following the partial replication strategy, each node n; replicates only a
subset of the system’s data and we assume each data item is tagged with an
unique identifier. As in classical multi-version concurrency control (MVCC),
each data item d is represented by a sequence of versions (k,val,ver), where k
is the unique identifier of d, val is its value and ver is a scalar, monotonically
increasing logical timestamp that identifies (and totally orders) the versions of
d.

We abstract over the data placement strategy by assuming data is divided
across p data partitions, and that each partition is replicated across r nodes,
i.e., r represents the replication factor of each data item. We represent by g; the
group of nodes that replicate partition j, and we also say that g; is the owner
of partition j. We assume that for each partition there exists a single node
called master, represented by master(g;). Each group is comprised by exactly
r nodes (to guarantee the target replication factor), and we assume that not
all of them crash simultaneously. Also, we do not require groups to be disjoint,
i.e., different groups can have nodes in common, and a node may participate in
multiple groups as long as |J i—1.p9; = IL. Given a group g;, we represent as
data(g;) the set of data items replicated by the nodes in g;.

We model transactions as a sequence of read and write operations on data
items, encased in an atomic block. Each transaction originates on a node n; € II,
and can read and/or write data items in any replicated partition. Also, we
assume no prior knowledge on the set of data items accessed (read or written)
by a transaction. Given a data item d, we represent as replicas(d) the set
of nodes that replicate d, i.e., the nodes of group g; that replicate the data
partition containing d. Given a transaction T, we define participants(T') as the
set of nodes which took part in a transaction, namely | J ¢ replicas(d), where
F = readSet(T) U writeSet(T) (i.e., F is the set of data items read or written
by T'). We also assume that every transaction T has two scalar timestamps: a
start timestamp, called T.ts®, which represents the transaction’s snapshot, and
a commit timestamp, called T.ts¢, which represents Ts serialization point.

Finally, we assume that the replication protocol (or the MVCC algorithm)
keeps a scalar timestamp, henceforth called most RecentT'S;, that represents the
timestamp of the most recent committed update transaction in node n;.

3 Caching in Multi-version Partial Data Repli-
cation
In this section, we address the two main challenges identified in §1 and propose

a generic cache mechanism targeting multi-version partial replication environ-
ments. Our solution is two-fold: (i) a cache consistency algorithm, which allows

to determine if a transaction can safely read cached data items while still preserv-
ing the replication protocol’s correctness properties; and (ii) an asynchronous
validity extension mechanism, aimed at maximizing the freshness of the data
items maintained in cache.

3.1 Ensuring Data Consistency

To ease implementation, both cached and non-cached data items are maintained
in multi-version data containers. However, unlike the versions of non-cached
data, the versions of cached data items are augmented with additional informa-
tion in order to enable the operation of the consistency algorithm. A version of
a cached data item d is a sequence of tuples (k,val, version,validity), where k
is a unique identifier for d; val is a value for d; version is the timestamp/version
of this value for d; and validity is the timestamp/version up to when this value
is valid, i.e., the timestamp that represents the most recent snapshot in which
this version represented the freshest value for d.

Read operation in the remote node Since we augmented the versions of
cached data items with validity timestamps, the cache consistency algorithm
requires more information to be sent when a remote node responds to a remote
read request. When a remote node n; receives a remote read request for data
item d, it responds with the requested data item’s version v, and also with the
respective version’s validity timestamp. If v is the most recent version of d, its
validity is the timestamp of the last update transaction to have committed on
node nj, i.e., mostRecentT'S;. Otherwise, v.validity is set to the timestamp of
the last transaction to have committed on node n; before the transaction that
overwrote v, i.e., v.validity is set to the most recent committed snapshot on n;
in which v was still the most up to date version of d.

Read operation in the local node Algorithm 1 describes the behaviour of
a read operation in the local node n;. When a transaction 7' needs to read a
data item, it first checks for the data locality. If a data item d is replicated in
the local node (i.e., n; € replicas(d)), the read operation can be satisfied locally.
Otherwise, d is considered to be remote. In this last case, with the addition of
the cache consistency algorithm, now T first inquires the cached data container
about d and only then, if d is not found, it issues a remote read request for d.
If d is found in the cache (Line 9), it can only be used if there is some version
v of d that was created before T began. This is achieved by simply checking
vversion and T.ts®: as in classical MVCC, it selects the most recent version
having version less than or equal to T.ts® (Lines 11-15).

When v is found (Line 3), an additional check is still required to ensure that
is safe for T to read v. The T.ts® is compared with v.validity (Line 4), and if
the check fails v is considered too old because it may exist a newer version on
the remote node that is not known on the local node yet, i.e., a fresher version
may have been committed by some transaction that should be serialized before
T, and whose updates T should observe. Otherwise, T can safely read v. If
some of the checks fails a cache miss is forced (by returning a null value) and
the remote read request for d is executed.

Algorithm 1 Read operation on the local node.

1: function READCACHE(Key k, Timestamp ts)
2 Version v < GETVISIBLEVERSION(k, ts)

3 if v # null then

4: if ts < v.validity then

5: return v

6 return null

7: function GETVISIBLEVERSION(Key k, Timestamp ¢s)
8 Versions vers < cache.GETVERSIONS(k)

9 if vers # null then

10: Version v < vers.mostRecentVersion
11: while v # null do

12: if v.version < ts then

13: return v

14: else

15: v 4— v.prev

16: return null

3.2 Maximizing Cache Effectiveness

According to Algorithm 1, a transaction T can safely read a cached version v
only if v.validity ensures that it is sufficiently fresh given T.ts®. On the other
hand, as usual in MVCC, at the beginning of a transaction (in node n;) its
ts® is set to mostRecentT'S;, i.e., the timestamp of the last update transaction
to have committed in n;. This ensures that any freshly started transaction T'
will necessarily observe the updates produced by any committed transaction
involving T"’s originating node.

Since transactions’ ts° are monotonically increasing to reflect the data mod-
ifications in the system, the validity timestamp of a cached versions needs to be
refreshed if one wants to maximize the chance of being able to serve transac-
tion’s read requests using cached data. This is achieved by a validity extension
mechanism described in Algorithms 2 and 3.

Extension operation on the sender node In a simple way, the validity
extension mechanism consists in broadcasting extension messages, and according
to them updating the required validities.

The GETMODIFIEDSET function (Algorithm 2) describes the operations per-
formed by a node n; to build a modified set (mSet) intended for another node
nj. A mSet is a set that contains the identifiers of all the data items of which
the sender node n; is primary owner (i.e., Ujegata(g,) i = master(g;)) and that
were modified since the last time a mSet was built for n;. To allow this, each
node n; keeps track of all the transactions in which it participated (denoted as
committedTransations), i.e., J,,,c7 ni € participants(tzn) (where T is the
set of all transactions). It also maintains for each other node n; the commit
timestamp of the last committed transaction at the moment for which n; sent
an extension message to n; (denoted as lastSentValue[j]).

Logically, a mSet is built by iterating through all the committed transactions
in node n; starting from the most recent transaction to the transaction with
commit timestamp equal to lastSentValue[j]+ 1, and merging the write-sets of
all the corresponding transactions.

Extension operation on the receiver node FExtension messages can be dis-
seminated asynchronously across the system using various propagation strate-
gies (provided that the dissemination is done with FIFO ordering). We devised

Algorithm 2 Extension operation on the sender node n;.

1: function GETMODIFIEDSET(Nodeld j)

2: Timestamp mostRecent < mostRecentT'S;
3: Timestamp lastSent < lastSentV alue[j)

4: Set mSet < 0

5: if mostRecent > lastSent then

6: for all tzn € committedTransactions do
T if ten.tsC > lastSent then

8: for all item € tzn.writeSet do

9: if ISPRIMARYOWNER (item) then
10: mSet + mSet U {item}
11: return [mSet, mostRecent)

12: lastSentValue[j] + mostRecent

13: return null

three basic dissemination strategies:

Eager An extension message is broadcast whenever a transaction commits at
some node;

Batch Each node broadcasts an extension message with a fixed (configurable)
frequency; and

Lazy An extension message is only disseminated when a node receives a remote
read request, by piggybacking it in the remote read response.

Finally, Algorithm 3 presents the extension process executed when a node
receives an extension message (from node n;). An extension message is com-
prised by two pieces of information: a mSet, and the timestamp of the most
recent committed update transaction at the time the mSet was built (denoted
mostRecent).

When an extension message is received, the execution of function EXTEND-
VALIDITIES is triggered. Extending the validities of the cached versions logically
means that the validities of all (the most recent) cached versions owned by n;
that are not included in the mSet (i.e., that have not been updated since the
last extension message) may be extended. This could be achieved by iterating
all the cached versions to identify which validities should be extended. But,
in order to do this efficiently, the extension process associates a single shared
validity (denoted as mostRecentV alidities[i]), to all the data items of node n;
whose cached versions are known to be up to date at the time the mSet was
built.

By executing function EXTEND VALIDITIES, two operations are performed: all
data items contained in the mSet are detached from the shared validity (Lines 3—
8), by cloning its value into a private validity; and the value of the shared validity
for node n;, mostRecentV alidities[i], is updated to mostRecent (Lines 9-13),
instantly extending the validities of the most recent cached versions.

Note that, depending on the replication protocol and on the MVCC algo-
rithm, some slight modifications/adaptations may be required to both the cache
consistency algorithm and the validity extension mechanism described above.

4 Implementation

Since the mechanism presented in §3 is generic, as a proof of concept, we applied
it to a specific partial replication protocol, namely SCORe [13]. In this section,

Algorithm 3 Extension operation on the receiver node.

1: Validity[] mostRecentV alidities < Validity[II]

2: function EXTENDVALIDITIES(Set mSet, Timestamp mostRecent, Nodeld i)
for modifiedItem € mSet do
Versions vers < cache.GETVERSIONS(modi fiedItem)
if vers # null then
Version v < vers.mostRecentVersion
if v.validity.1SSHARED() then
v.walidity < [v.validity.validity, false]
Validity mrv < mostRecentV alidities[i]
if mrv = null then
mostRecentV alidities[i] < [mostRecent, true]
else
mrv.validity < mostRecent

GREOL PP U

we present a brief overview of the protocol and describe the adaptation of the
proposed cache mechanism.

4.1 Overview of the SCORe Protocol

SCORe is a multi-version partial replication protocol providing 1CS as consis-
tency guarantee, and is in accordance with the system model presented in §2.
As usual in MVCC, in SCORe each node maintains a list of versions for each
replicated data item. The versions that are visible to a transaction T' are deter-
mined via T.ts®, which is established upon its first read operation. We omit a
description of SCORe’s commit phase, which is not required for the understand-
ing of the operation of the cache mechanism. It suffices to say that is based on
a variant of the two phase commit protocol (2PC).

Read operations require the determination of which version among the main-
tained ones should be visible to a transaction. This is achieved using the fol-
lowing three rules:

R1 Snapshot lower bound In every read operation on a node n;, SCORe
verifies that n; is sufficiently up to date to serve transaction T, i.e., whether
it has already committed all the transactions that have been serialized
before T according to T.ts®. This is achieved by blocking T until T'.ts¥ is
greater or equal than mostRecentTS;;

R2 Snapshot upper bound In order to maximize data freshness, on the first
read operation of transaction 7', T'.ts® is set to the timestamp of the most
recent version of the data item being read; and

R3 Version selection As usual in MVCC, whenever there are multiple ver-
sions for some data item, the selected version will be the most recent one
that has a timestamp less than or equal to T'.ts°.

4.2 Caching in the SCORe Protocol

We applied the cache mechanism in SCORe, on top of the REDSTM frame-
work [?]. This framework allows the implementation of multiple replication
protocols, and it follows the system model described in §2, except for one key
difference. Each group of nodes is comprised by exactly r nodes, but they are
disjoint, and each data partition is replicated by only one group.

Algorithm 4 Adaptation of Algorithm 1 for SCORe.

1: function READCACHE(Key k, Timestamp ts, boolean firstRead)
Version v < GETVISIBLEVERSION(k, ts, firstRead)

function GETVISIBLEVERSION(Key k, Timestamp ts, boolean firstRead)
Versions vers < cache.GETVERSIONS(k)
if vers # null then
Version v <— vers.mostRecentVersion
if firstRead then
return v

CoOXNSUE W

return null

4.2.1 Cache Consistency Algorithm

The cache consistency algorithm presented in §3.1 was kept almost untouched
when we applied it to SCORe. The only modification introduced was in the
GETVISIBLEVERSION function (see Algorithm 4), and in fact this modification
is an optional optimization.

SCORe’s reading rule R2 determines that in the first read operation of ev-
ery transaction T, T.ts® is advanced in order to maximize data freshness. So,
when reading cached data, we can apply the same rule and return the most
recent version of a data item when a transaction is doing its first read operation
(Lines 8-9). Thus, allowing SCORe to advance the transaction’s ts°.

4.2.2 Validity Extension Mechanism

Contrary to the cache consistency algorithm, which was left almost untouched,
the extension mechanism suffered some mild changes.

In REDSTM, each group of nodes replicates only one data partition and each
data partition is replicated by exactly one group of nodes. Since each group
replicates the same data items, all the nodes in a group will be aware of the
modifications performed to the data items they replicate, thus all of them will
build equal mSets. Therefore, we adapted the extension mechanism and only
one node per group, i.e., the group master, builds and broadcasts extension
messages to the other nodes (for the eager and batch strategies).

Algorithm 5 displays the adaptations done to function GETMODIFIEDSET.
Here, each node keeps track of which data items (that are replicated locally)
were updated since the last mSet was sent.

The part of the extension mechanism presented in Algorithm 3 was slightly
changed. Instead of keeping the most recent validities per node it keeps them
in a per partition basis.

Algorithm 5 Adaptation of Algorithm 2 for SCORe.

1: function GETMODIFIEDSET(Partitionld j)
Timestamp mostRecent <— mostRecentT'S;
Timestamp lastSent < lastSentValue[j]
Set mSet « 0
if mostRecent > lastSent then

for all item € committedItems do

if 1sLocAL(item) then
mSet < mSet U {item}
return [mSet, most Recent, j]
lastSentV alue[j] < mostRecent

o9 ONPUAWN

return null

5 Experimental Evaluation

In this section, we present the results of an experimental evaluation of the
proposed cache mechanism. In this evaluation we address two questions: (i) what
is the impact of the cache mechanism in the system’s overall throughput? and
(ii) what is the impact of the cache mechanism in the amount of remote read
operations?

Experimental setup All the experiments were conducted in a heterogeneous

cluster with 8 nodes. The first 4 nodes have 2 x Quad-Core AMD Opteron 2376 2.3 GHz
and 16 GB of RAM. The other 4 have 1 x Quad-Core Intel Xeon X3450 2.66 GHz

(with Hyper-Threading) and 8 GB of RAM. The operating system is Debian 5.0.10

with the Linux kernel 2.6.26-2-amd64, and the nodes are interconnected via
private Gigabit Ethernet. The installed Java platform is OpenJDK 6. The
replication factor of each data item was set to two.

Benchmarks (@ODOL

We used the Red-Black Tree micro-benchmark to run some experiments. The
benchmark is composed of three types of transaction: insertion, which add an
element to the tree (if not yet present); deletion, which remove an element from
the tree (if present); and searching, which search the tree for a specific element.
Insertions and deletions are said to be write transactions. This benchmark is
characterized very small and fast transactions that perform little work, keeping
contention at very low levels. AND LOW LOCALITY in data access. random
elements.

5.1 Results

6 Related Work

We can identify a set of variables that directed the research conducted in the
context of replicated transactional systems, such as: the nature of the data’s
physical storage medium; the replication level; and the consistency guarantees
between replicas.

Considering the nature of the data’s physical storage medium, we can find
research directed to database management systems (DBMSs) in persistent stor-
age [7] (like hard disks), to DBMSs in volatile storage [4] (like RAM), and also
to transactional memory systems [3, 16].

The replication level may range from full data replication, where all nodes
replicate an entire copy of the system’s data, to data distribution, where each
data item resides in a single node. In the middle, fits the solutions exploring
partial data replication, where each node replicates only a subset of the system’s
data.

Most proposals of replicated transactional systems [2,3,11,12] aimed at full
replication scenarios. This approach of full replication has the advantage of
being able to serve every data access locally, hence reducing the inter-node

communication. However, it requires every node to participate in the commit
phase, no mater which data was modified by the transaction, hence requiring
more synchronization and reducing the potential scalability of this approach.

The data distribution approach was also explored [9,16], ranging from mas-
ter/slave to control and data-flow techniques.

When considering the partial replication approach, solutions in the litera-
ture can be grouped according to which nodes are involved in the commitment
of transactions; and according to which consistency guarantees are provided.
The work in [18] introduces non-genuine protocols, in which all the nodes in the
system are necessarily involved in the commitment of a transaction. Against
this kind of approach, genuine protocols (i.e., the commitment of a transaction
only involves the nodes replicating data items modified by that transaction)
have shown that can achieve better scalability [13,14,17]. Regarding the offered
consistency guarantees, the strongest level of consistency is 1CS, which ensures
that a system with multiple replicas behaves like a centralized (non-replicated)
system. However, either for performance optimization or by the natural implica-
tions of the CAP theorem [1], it is common for transactional systems with data
replication resort to weaker consistency levels, such as snapshot isolation [18] or
eventual consistency [4].

In the context of DBMSs, Serrano et al. [18] argue that 1CS imposes strong
limitations on the scalability of replicated solutions and proposes a non-genuine
protocol with an alternative consistency level called 1-copy-snapshot-isolation
(1SI), which explores snapshot isolation for managing consistency between repli-
cas. In turn, Schiper et al. propose P-Store [17], an efficient solution ensuring
1CS for DBMSs, proposing the first genuine protocol. However, P-Store im-
poses that read-only transactions also undergo a distributed validation phase.
More recently, some more genuine protocol have been proposed. GMU [14] was
the first proposal of a genuine protocol ensuring that read-only transactions are
never aborted or forced to undergo a distributed validation phase. SCORe [13]
is very similar to GMU and may be seen as an evolution of it, but it offers 1CS
(instead of extended update serializability (EUS) offered by GMU).

Doing cache of remote data that is accessed frequently is an orthogonal
technique to all these systems, and it can be adopted to improve the efficiency
of data accesses. Here, the main challenge is how to preserve consistency when
cached data (which is replicated asynchronously) is read.

Finally, other techniques exist that are related to caching, such as Tashkent [6]
or AutoPlacer [10], which attempt to dynamically tune the mapping of data to
nodes, in order to minimize the frequency of remote data accesses. These tech-
niques are orthogonal to cache mechanisms and may even be used together.

7 Conclusions

Partial replication systems present a high scalability potential due to their gen-
uineness property, but they can be severely affected by the inefficient placement
of data. If nothing is done improve data access locality, as the system grows. A
possible solution to tackle this problem is the use of caching techniques. These
techniques replicate remote data that are frequently accessed, in order to serve
read operations locally.

10

In this paper, we proposed a generic cache mechanism adaptable to multi-
version partial data replication protocols.

As future directions for this work, we highlight the development of a garbage
collection mechanism for old cached data, and an extensive experimental eval-
uation using various benchmarks with different workloads and data access pat-
terns.

References

[1] E. A. Brewer. Towards robust distributed systems. In PODC, 2000.

[2] N. Carvalho et al. A generic framework for replicated software transactional
memories. In NCA, 2011.

[3] M. Couceiro et al. D2stm: Dependable distributed software transactional
memory. In PRDC, 2009.

[4] G. DeCandia et al. Dynamo: Amazon’s highly available key-value store.
SIGOPS, 2007.

[5] R. J. Dias et al. Efficient support for in-place metadata in transactional
memory. In Euro-Par. 2012.

[6] S. Elnikety et al. Tashkent: Uniting durability with transaction ordering
for high-performance scalable database replication. In EuroSys, 2006.

[7] J. Gray et al. The dangers of replication and a solution. In ACM SIGMOD,
1996.

[8] B. Kemme et al. A suite of database replication protocols based on group
communication primitives. In ICDCS, 1998.

[9] C. Kotselidis et al. Distm: A software transactional memory framework for
clusters. In ICPP, 2008.

[10] J. Paiva et al. Autoplacer: Scalable self-tuning data placement in distri-
buted key-value stores. In ICAC, 2013.

[11] R. Palmieri et al. Aggro: Boosting stm replication via aggressively opti-
mistic transaction processing. In NCA, 2010.

[12] F. Pedone et al. The database state machine approach. Distributed and
Parallel Databases, 14, 2003.

[13] S. Peluso et al. Score: A scalable one-copy serializable partial replication
protocol. In Middleware. 2012.

[14] S. Peluso et al. When scalability meets consistency: Genuine multiversion
update-serializable partial data replication. In ICDCS, 2012.

[15] H. Pimentel et al. Enhancing locality via caching in the GMU protocol. In
CCGRID, 2014.

11

[16] M. M. Saad et al. Hyflow: A high performance distributed software trans-
actional memory framework. In HPDC, 2011.

[17] N. Schiper et al. P-store: Genuine partial replication in wide area networks.
In SRDS, 2010.

[18] D. Serrano et al. Boosting database replication scalability through partial
replication and 1-copy-snapshot-isolation. In PRDC, 2007.

12

	Introduction
	System Model
	Caching in Multi-version Partial Data Replication
	Ensuring Data Consistency
	Maximizing Cache Effectiveness

	Implementation
	Overview of the SCORe Protocol
	Caching in the SCORe Protocol

	Experimental Evaluation
	Results

	Related Work
	Conclusions

