
On the Relevance of Total-Order Broadcast
Implementations in Replicated Software

Transactional Memories

Tiago M. Vale, Ricardo J. Dias, and João M. Lourenço?

Departamento de Informática and CITI
Universidade Nova de Lisboa, Portugal

{t.vale,ricardo.dias}@campus.fct.unl.pt
joao.lourenco@fct.unl.pt

Abstract. Transactional Memory (TM), an attractive solution to sup-
port concurrent accesses to main-memory storage, is already being de-
ployed by some of the major CPU and compiler manufacturers. To ad-
dress scalability and dependability challenges, researchers are now com-
bining replication, TM and certification-based protocols. To maintain
consistency and ensure common transaction serialisation order, these
protocols rely in a total-order broadcast primitive, usually provided by
some Group Communication System (GCS). The total-order broadcast
service can be implemented by different algorithms, which hold different
properties. In this paper we present a detailed analysis of the impact
of some algorithms implementing total-order broadcast in different TM
workloads, opening up future work to improve performance of replicated
TMs.

1 Introduction

The interest in research on paradigms for parallel programming increased as
multi-core computers hit mainstream. Software Transactional Memory (STM) [1]
as earned interest from both the academic and industrial research communities.
STM relieves the programmer from the subtleties of the traditional lock-based
concurrency control by adapting the familiar concept of transaction inherited
from the database world. Enterprise-class STM-based applications have already
been deployed in production systems1. These real-world applications usually hold
requirements such as scalability and reliability which are commonly tackled using
replication. Distributed STM has been similarly motivated as an alternative
to (distributed) lock-based concurrency control in distributed systems, where
the problems associated with locks are exacerbated.

Given the similarities between STM and database transactions, research on
STM replication have borrowed inspiration from the literature in replicated
? This work was partially supported by the Euro-TM EU COST Action IC1001 and the
Portuguese national research project PTDC/EIA-EIA/113613/2009 (Synergy-VM).

1 https://fenix-ashes.ist.utl.pt

2

databases. A handful of replication protocols [2,3,4,5], commonly referred to as
certification-based, have been proposed and evaluated in the context of replicated
STM systems. Replica consistency is ensured at commit time using a total-order
broadcast to guarantee a common transaction serialisation order. Unfortunately,
the relative overhead introduced by the certification of distributed memory trans-
actions is much higher than the overhead introduced by the certification of dis-
tributed database transactions. On the one hand, memory transactions operate
over main memory which is a very fast storage media, and on the other hand,
some key features of databases require additional processing time, such as SQL
parsing, plan optimisation, and secondary storage accesses.

Total-order broadcast can be implemented using different algorithms, which
exhibit different properties such as latency, fairness and throughput. In this
paper, and to the best of our knowledge, we present the first study of the im-
pact that the different algorithms implementing total-order broadcast have on
replicated STMs. In the remainder of this paper, we discuss certification-based
protocols and their key ingredient, the total-order broadcast, in §2; followed by
a discussion of its impact in replicated STM environments in §3. We proceed
with a description of our implementation and discuss the experimental results
in §4 and §5, respectively. We close the paper with a discussion of the related
work in §6, and some concluding remarks in §7.

2 Software Transactional Memory Replication

While the transaction concept bridges the world of databases and STM, memory
transactions’ execution time is significantly smaller than database transactions.
Memory transactions only access data in main memory, thus not incurring in
the expensive secondary storage accesses characterising the latter. Furthermore,
SQL parsing and plan optimisation are also absent in STM. On the other hand
this increases the relative cost of remote coordination. Nonetheless, literature
on replicated and distributed databases represents a natural source of inspira-
tion when developing protocols for replicated STM. In fact, current research on
replicated STM have embraced protocols commonly referred to as certification-
based. These protocols rely on total-order broadcast, usually provided by some
group communication system, to impose a global transaction serialisation order.

2.1 Total-Order Broadcast

Informally, a total-order broadcast ensures that messages sent to a set of re-
cipients are delivered in the same order by all recipients. Total-order broadcast
guarantees the following properties [6]: (1) Validity : if a correct replica TO-
broadcasts a message m, then it eventually TO-delivers m; (2) (Non-)uniform
Agreement : if a (correct) replica TO-delivers a message m, then all correct repli-
cas eventually TO-deliver m; (3) Uniform Integrity : for any message m, every
replica TO-delivers m at most once, and only if m was previously TO-broadcast
by sender(m); and (4) (Non-)uniform Total Order : if (correct) replicas r1 and r2

3

both TO-deliver messages m and m′, then r1 TO-delivers m before m′, if and
only if r2 TO-delivers m before m′. A broadcast that satisfies all these properties
except (4), i.e., that provides no ordering guarantee, is instead called a reliable
broadcast.

Notation. A total-order broadcast consists of two primitives, to-broadcast(m)
and to-deliver(m). We say a replica r TO-broadcasts a messagem when r executes
to-broadcast(m), and r TO-delivers m when r executes to-deliver(m). We denote
R-broadcast and R-deliver analogously for reliable broadcast. The sender of a
broadcasted message m is denoted by sender(m).

There are several algorithms to implement total-order broadcast [6]. In sequen-
cer-based algorithms one replica is elected as the sequencer and is responsible
for ordering messages. For example, any replica r wanting to TO-broadcast a
message m, starts by unicasting m to the sequencer, which in turn broadcasts
m on behalf of r. A different approach is followed by privilege-based algorithms.
These algorithms rely on the idea that senders can broadcast messages only when
they are granted the privilege to do so. The privilege to broadcast (and order)
messages is granted to only one process at a time, but this privilege circulates
from process to process.

2.2 Certification-Based Protocols

Current research in STM replication has borrowed protocols from the database
literature usually classified as certification-based. In certification-based proto-
cols, unlike classical eager replication, transactions are optimistically executed
on a single replica without any remote coordination. Updates are buffered and
applied at all replicas if a transaction is found to be valid and successfully com-
mits. Replicas coordinate at commit time by way of a distributed protocol that
validates (certifies) transactions and establishes a global transaction serialisa-
tion order. Thus, the outcome of a transaction’s validation is the same at every
replica, and the updates of valid transactions are applied at every replica in the
same order. While update transactions require replica coordination at commit
time, as described, read-only transactions can validate and commit locally at the
host replica.

To impose a global transaction serialisation order, certification-based proto-
cols rely on total-order broadcast to disseminate transactions at commit time.
This contrasts with classical eager replication protocols based on distributed
locking that potentially incur in deadlocks and suffer from communication over-
heads during the transaction execution phase. Depending on which transactional
data is TO-broadcasted, certification protocols can be classified in two schemes:
Non-Voting [7] and Voting [8]. In the Non-Voting scheme, when a transaction t
executing at some replica enters the commit phase, both its write set W and
read set R are TO-broadcasted. This means that each replica is able to inde-
pendently validate and abort or commit t, as they are in possession of all the
necessary information, i.e., both W and R. Note that given the total ordering of

4

the deliveries, all replicas will process all transactions in the same order, so the
result of any transaction’s validation will be the same on all replicas.

By disseminating both W and R the Non-Voting scheme requires a single
communication round to commit a transaction. However, the read set is typi-
cally much larger than the write set, thus the second scheme, Voting, explores
the trade-off of exchanging potentially much smaller messages (since R, typi-
cally much larger than W , is not disseminated) at the expense of requiring two
communication rounds (an additional R-broadcast) instead of just one.

3 On the Relevance of Total-Order Broadcast
Implementations

Consider the typical work flow of a transaction-processing thread Th under a
certification-based protocol. Th executes transaction t. If t is read-only it is
locally validated and committed (or aborted, thus re-executed) by Th. Other-
wise Th TO-broadcasts t and waits. Upon the respective TO-delivery, Th vali-
dates and commits or aborts t, re-executing if aborted. We refer to the time Th
waits, i.e., the time between the TO-broadcast and the respective TO-delivery,
as latency.

Intuitively, different implementations of total-order broadcast will have a
different impact on latency, and thus on the performance of typical replicated
STM deployments, where each replica executes roughly the same percentage of
update transactions. In the sequencer-based algorithm (see §2.1) it is expected
that (1) latency in replica s, assigned as sequencer, is lower than in the remain-
ing replicas; and (2) transaction ordering is biased towards transactions from s,
because unlike other replicas, s can skip an initial unicast. With privilege-based
implementations, latency is expected to be similar in all replicas, as they are
only allowed to broadcast during their slot. Thus, a sequencer-based total-order
broadcast implementation is likely to allow a replicated STM to achieve higher
performance than a privilege-based implementation at the expense of an un-
equal contribution of each replica to the global throughput of the system. The
sequencer will likely execute much more transactions, and faster, than the other
replicas. This contrasts with the privilege-based solution in which each replica
is expected to contribute evenly.

4 Implementation

To implement and evaluate the relevance of different total-order broadcast imple-
mentations in replicated STMs, we have extended an existing Java STM frame-
work [9] to support replication in a transparent way for the programmer. In this
paper we will only cover the architecture and API for implementing replicated
STM algorithms, whose understanding is necessary for our study. The STM layer
implements an STM algorithm and exposes an API to the application with the
following primitives:

5

1. stm_commit(t):
2. if t is not read-only and stm_validate(t)
3. certify(t)
4. else
5. if not stm_validate(t)
6. stm_abort(t)

7. certify(t):
8. to-broadcast(t)
9. wait until to-deliver(t)

10. if stm_validate(t)
11. stm_apply(t)
12. else
13. stm_abort(t)

Fig. 1: Non-Voting Certification implementation on our framework.

stm_begin(t) Begin transaction t.
stm_commit(t) Request commit of transaction t.
stm_abort(t) Aborts transaction t.
stm_read(t,m) Transaction t reads value of memory location m.
stm_write(t,m, v) Transaction t writes value v to memory location m.

Application code defines transactions by tagging methods with an @Atomic an-
notation. These methods are bytecode-instrumented to inject calls to the un-
derlying STM layer using the described API where appropriate. To support
the distributed certification of transactions, the STM layer interacts with the
certification-based protocol layer through the following API:

stm_validate(t) Transaction t is validated against the local STM state.
stm_apply(t) Transaction t’s updates are applied to the local STM state.
certify(t) Issues the distributed certification of transaction t.

The certify primitive allows the STM layer to trigger the distributed certification
of an update transaction when stm_commit is issued by the application. When
certifying a transaction t, stm_validate and stm_apply concede the certification-
based protocol the ability to validate t in the local replica and apply its updates,
respectively. On the bottom of the architectural stack we have a group communi-
cation system that provides the total-order broadcast primitives, to-broadcast(t)
and to-deliver(t). These are used by the certification-based protocol layer to
broadcast transactions for certification while ensuring a common order across
all replicas. Figure 1 illustrates an implementation of the Non-Voting Certifica-
tion under our framework.

5 Experimental Results

All the experiments were performed in a cluster of 8 nodes interconnected via
gigabit ethernet, each one equipped with a Quad-Core AMD Opteron 2376
at 2.3Ghz, 4×512KB cache L2, and 8GB of RAM. The installed Java Platform
was OpenJDK 6. The local STM layer of our infrastructure used the TL2 algo-
rithm [10]. The certification-based protocol was the Non-Voting scheme. With
regard to the underlying group communication system providing the total-order
broadcast primitives needed by the certification-based protocol, three different
implementations were considered: JGroups, Appia [11] and Spread. Switching be-
tween each group communication system (GCS) is done by parametrisation when
executing the target program, hence no code rewriting whatsoever is needed.

6

 0

 4

 8

 12

 16

 20

2 4 6 8

T
ra

n
s
a
c
ti
o
n
s
 x

 1
0

3
/s

e
c
o
n
d

Replicas

(a) JGroups.

 0

 4

 8

 12

 16

 20

2 4 6 8

T
ra

n
s
a
c
ti
o
n
s
 x

 1
0

3
/s

e
c
o
n
d

Replicas

1 thread 2 threads 4 threads

(b) Appia.

 0

 4

 8

 12

 16

 20

2 4 6 8

T
ra

n
s
a
c
ti
o
n
s
 x

 1
0

3
/s

e
c
o
n
d

Replicas

(c) Spread.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 6 8

L
a
te

n
c
y
 (

m
s
)

Replicas (2 threads)

JGroups (seq)
JGroups

Appia (seq)

Appia
Spread

(d) Latency.

Fig. 2: Throughput and total-order broadcast latency in Red-Black Tree, config-
ured with initial size 32078, range 131072 and 10% updates.

JGroups is a well-known toolkit used in several projects and was configured ac-
cording to the SEQUENCER protocol configuration from the freely available repos-
itory2, providing non-uniform total order using a sequencer algorithm. Appia is a
group communication system that has been used in contributions to STM repli-
cation, and was configured with SequencerUniformLayer to provide uniform
total-order broadcast using a sequencer-based algorithm. Spread uses a privilege-
based algorithm and we used the vanilla configuration and message type was set
to AGREED, which guarantees non-uniform total order.

5.1 Red-Black Tree

We start by considering a common micro-benchmark from the literature, the
Red-Black Tree. This benchmark is composed of three types of transactional
operations: (1) insertions, which add an element to the tree (if not already
present); (2) deletions, which remove an element from the tree (if present); and
(3) searches, which search the tree for a specified element. Insertions and dele-
tions are said to be update transactions. The tree was populated with 32768
2 https://github.com/belaban/JGroups.

7

 25

 50

 75

2 4 6 8

T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Replicas

Others Sequencer

7%
21%

32%
42%

92%
78%

67%
57%

(a) JGroups.

 25

 50

 75

2 4 6 8

T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Replicas

Others Sequencer

50%

67%
74% 76%

49%

32%
25% 23%

(b) Appia.

 25

 50

 75

2 4 6 8T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Replicas

R1
R2

R3
R4

R5
R6

R7
R8

50%

24%
16% 12%

49%

25%

16%
12%

24%

16%

12%

25%

16%

12%

16%

12%

16%

12%

12%

12%

(c) Spread.

Fig. 3: Throughput breakdown in Red-Black Tree, with 2 threads and configured
with initial size 32078, range 131072 and 10% updates.

pseudo-randomly generated values, ranging from 0 to 131072. Each thread exe-
cuted 10% of update transactions. Hence, the workload is characterised by very
small and fast transactions, with very low contention.

Fig. 2 shows the throughput of our system (in transactions× 103 per second,
higher is better) on the micro-benchmark, varying the number of replicas and
the number of threads per replica. Unsurprisingly, JGroups (Fig. 2a) achieves
the best performance of the three for every combination, due to both the fixed
sequencer implementation and the uniformity relaxation. Appia (Fig. 2b) quickly
peaks at around half the throughput of JGroups, which seems to be hitting a
bottleneck, perhaps due to the requirements of the uniform property. Finally, in
Fig. 2c, we have the throughput of the system using Spread. The linear scala-
bility displayed is consistent with the idea that the algorithm implemented by
Spread achieves fairness. Since every node is provided with equal opportunities
to broadcast and order messages, the system scales either with more threads
per node, or when nodes increase, not incurring in the bottleneck of a fixed se-
quencer. In Fig. 2d we have the average total-order broadcast latency for each
group communication system. As discussed in §3, the sequencer replica in both
JGroups and Appia – JGroups (seq) and Appia (seq), respectively – suffers from
lower latencies than the rest of the replicas. With Spread and its privilege pro-
tocol the latency is the same for all replicas.

Intuitively, one expects that the higher performance of JGroups is achieved
at the cost of unfairness. The sequencer incurs in substantially lower latency, so
that replica alone should be dominating the system’s throughput. Spread should
exhibit the exact opposite behaviour, i.e., each replica contributes evenly to the
total throughput. Since the privilege protocol gives exclusive broadcast rights
to each replica at a time, hence the same latency for all replicas. In Fig. 3 we
breakdown each replica’s contribution to the overall system throughput, where
the x-axis represents the number of replicas and the y-axis the percentage of
transactions each replica executed. Each colour represents the portion of trans-
actions executed by a specific replica. The results corroborate our intuitions.
In JGroups (Fig. 3a) the sequencer totally dominates the system’s throughput,
while in Spread (Fig. 3c) each replica contributes evenly. Appia (Fig. 3b) lies

8

 0

 35

 70

 105

 140

 175

 210

 245

 280

 315

 350

2 4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Replicas

(a) JGroups.

 0

 35

 70

 105

 140

 175

 210

 245

 280

 315

 350

2 4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Replicas

1 thread 2 threads 4 threads

(b) Appia.

 0

 35

 70

 105

 140

 175

 210

 245

 280

 315

 350

2 4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Replicas

(c) Spread.

Fig. 4: Execution time in Intruder, with the intruder configuration from [12].

 25

 50

 75

2 4 6 8

T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Replicas

Others Sequencer

0% 0% 0% 0%

99% 99% 99% 99%

(a) JGroups.

 25

 50

 75

2 4 6 8

T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Replicas

Others Sequencer

36%

64% 65%
76%

63%

35% 34%
23%

(b) Appia.

 25

 50

 75

2 4 6 8T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Replicas

R1
R2

R3
R4

R5
R6

R7
R8

49%

24%
16% 12%

50%

25%

16%
12%

25%

16%

13%

24%

16%

12%

16%

12%

16%

12%

12%

12%

(c) Spread.

Fig. 5: Transaction breakdown in Intruder, with 2 threads and the intruder con-
figuration from [12].

in the middle due to the additional overhead imposed by the uniform property,
which is consistent with the measured latencies.

5.2 Intruder

In the Intruder benchmark each thread repeatedly executes 3 phases. The first
phase basically involves a simple FIFO queue from which threads pop a packet. In
the second phase threads add the packet to a dictionary (implemented by a self-
balancing tree) that contains lists of packets that belong to the same flow. If all
the packets of a flow have been delivered, they are reassembled and added to the
completed packets FIFO queue. The final phase consists of taking a reassembled
packet from the FIFO queue and checking if it has been compromised.

The benchmark was parameterized according to the intruder configuration
in [12]. There were 2048 flows with 4 packets each, and 10 of the flows had
been attacked. Transactions under this configuration are small and fast, and the
workload is highly contented, due to both of the FIFO queues and the rebalancing
of the tree in the reassembly phase. Thus, this workload distinguishes itself from
Red-Black Tree’s in the contention level.

Fig. 4 shows the execution time (y-axis) when varying the number of replicas
(x-axis). The system behaves differently depending on the GCS used. When us-
ing JGroups (Fig. 4a) the performance is independent of the number of replicas.
The sequencer does all the work and the other replicas have their transactions

9

 150

 200

 250

 300

 350

 400

 2 3 4 5 6

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Replicas (4 threads)

JGroups Appia Spread

Fig. 6: Execution time in Genome, with the genome configuration from [12].

constantly aborted until the benchmark finishes, as can be seen in the transaction
breakdown for JGroups in Fig. 5a. With Appia, Fig. 4b, the system degrades
performance as more replicas are added. Since the sequencer does not totally
dominate in Appia (Fig. 5b) as in JGroups, this is the expected behaviour due
to the contended workload leading to a high abort ratio. With Spread the execu-
tion times are much higher (Fig. 4c) due to the privilege-based implementation.
Nevertheless, the system performs better when more threads are added.

5.3 Genome

The Genome benchmark consists of several steps which are executed sequentially,
but inside each step several threads execute concurrently. But since the steps are
sequential, threads wait for each other when advancing from one step to the next.
The last step is completely sequential (it is executed by a single thread), and
there is one step which is a mix of concurrent and sequential parts.

The benchmark was parameterized according to genome configuration in [12].
This workload is radically different from both Red-Black Tree’s and Intruder’s.
Overall, transactions are of moderate length (with regard to the number of oper-
ations) and there is little contention. Unlike the previous benchmarks, in Genome
data is partitioned among threads. Threads execute a sequence of steps in syn-
chrony, i.e., threads must wait for each other when advancing from step a to step
b. With this workload, it is expected that the different total-order broadcast im-
plementations do not have a meaningful impact as replicas can only progress in
group. In fact, the system exhibits similar execution times independently of the
GCS employed, as seen in Fig. 6.

5.4 Vacation

The Vacation benchmark is implemented as a set of trees that keep track of cus-
tomers and their reservations for various travel items. During the execution of
the workload, several client threads perform a number of sessions that interact
with the travel system’s database. In particular, there are three distinct types
of sessions: reservations, cancellations, and updates. Each of these client ses-
sions is enclosed in a coarse-grain transaction to ensure validity of the database.
Consequently, transactions are of moderate size.

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

2 4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Replicas

(a) JGroups.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

2 4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Replicas

1 thread 2 threads 4 threads

(b) Appia.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

2 4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Replicas

(c) Spread.

 0

 10

 20

 30

 40

 50

 60

2 4 6 8

L
a
te

n
c
y
 (

m
s
)

Replicas (2 threads)

JGroups (seq)
JGroups

Appia (seq)

Appia
Spread

(d) Latency.

Fig. 7: Execution time and total-order broadcast latency in Vacation, with the
vacation-low configuration from [12].

The benchmark was parameterized according to the vacation-low configura-
tion in [12], where contention is low. The database had 16384 records of each
reservation item, and clients performed 4096 sessions. Of these sessions, 98% re-
served or cancelled items and the remainder created or destroyed items. Sessions
operated on up to 2 items and were performed on 90% of the total records. This
workload is similar to Genome’s considering that each thread has its own work
to perform. Thus, the complete bias of JGroups towards the sequencer should
not yield great performance comparing to Spread, since the sequencer can not
“steal” the work from the remaining replicas. But unlike Genome, the whole
thread execution path is concurrent.

Fig. 7 shows the execution time and latency when executing Vacation with
the differents GCS. The most interesting aspect with this experiment is that Ap-
pia (Fig. 7b) performs better than both JGroups (Fig. 7a) and Spread (Fig. 7c)
right from the start with 2 replicas. Analysing the latencies (Fig. 7d) we can ob-
serve that the average latency of Appia replicas is lower than Spread replicas, as
expected. With JGroups the sequencer has the usual low latency, but the other
replicas exhibit higher latency than any Appia replica. Thus, with Appia replicas

11

can progress concurrently while with JGroups the sequencer finishes first and
only afterwards the other replicas progress. Spread exhibits its usual behaviour.

6 Related Work

In this paper we have studied the impact of different total-order broadcast imple-
mentations on the regular Non-Voting Certification scheme. The following works
are also related to the use of certification-based protocols in STM replication and
share the common goal of reducing the coordination overhead, but none stud-
ies the impact of the GCS in the system’s workload and throughput. Couceiro
et al. in [2] propose the use of bloom filters to reduce the size of the messages
TO-broadcasted, as the efficiency of the total-order broadcast is known to be
strongly affected by the size of the exchanged messages [13]. The authors encode
the read set in a bloom filter whose size is computed to ensure that aborts due
to the bloom filter’s false positives are less than a user-unable threshold. The
work in [5] supports the coexistence of the Voting and Non-Voting schemes si-
multaneously, by relying on machine-learning techniques to determine, on a per
transaction basis, the optimal certification strategy to be adopted.

In certification-based protocols transactions are validated at commit time
and may be re-executed an unbounded number of times due to conflicts, leading
to an undesirably high abort rate. The work in [3] tackles these issues using
the concept of lease, informally, a token which gives its holder the privileges to
manage a given subset of the whole data set. When certifying a transaction,
replicas must first acquire the corresponding leases if not already in possession.
Once in possession of the leases, replicas can certify transactions using reliable
broadcast instead which is cheaper than total-order broadcast. If a transaction
is aborted, the host replica re-executes it without relinquishing the leases.

In [4] the authors exploit the optimistic atomic broadcast primitive in order
to reduce the message deliver latency [14]. As soon as a transaction t is optimisti-
cally delivered, t is speculatively certified instead of waiting for its final delivery
as in conventional certification protocols. This allows an overlap between compu-
tation and communication by certifying transactions while the optimistic atomic
broadcast computes the final order.

7 Concluding Remarks

STM replication based on certification protocols rely on total-order broadcast.
This paper presents, to the best of our knowledge, the first study of the im-
pact that different total-order broadcast implementations can have on several
benchmarks used in the literature, each with different workload characteristics.
We have found that the same system exhibits different behaviour with regard to
performance, fairness and latency, depending on the combination of total-order
broadcast implementation and workload characteristics.

These observations open up further work. One can exploit the low latency of
the sequencer to schedule update transactions exclusively to the sequencer and

12

read-only transactions (which do not require any remote coordination) to the re-
maining replicas, which only apply the updates in the background. Additionally,
since the remote coordination overhead is very high relative to transaction execu-
tion time, and read-only transactions execute exclusively locally, we can execute
read-only transactions while waiting for the delivery of update transactions. This
technique is specially appealing for non-sequencer-based implementations, such
as Spread’s, because latency is higher.

References

1. Shavit, N., Touitou, D.: Software Transactional Memory. In: Symposium on Prin-
ciples of Distributed Computing (PODC). (1995) 204–213

2. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable
Distributed Software Transactional Memory. In: IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC). (2009) 307–313

3. Carvalho, N., Romano, P., Rodrigues, L.: Asynchronous Lease-Based Replication
of Software Transactional Memory. In: ACM/IFIP/USENIX International Confer-
ence on Middleware (Middleware). (2010) 376–396

4. Carvalho, N., Romano, P., Rodrigues, L.: SCert: Speculative certification in repli-
cated software transactional memories. In: International Systems and Storage
Conference (SYSTOR). (2011)

5. Couceiro, M., Romano, P., Rodrigues, L.: PolyCert: Polymorphic Self-Optimizing
Replication for In-Memory Transactional Grids. In: ACM/IFIP/USENIX Interna-
tional Conference on Middleware. (2011) 309–328

6. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms.
ACM Computing Surveys 36(4) (2004) 372–421

7. Agrawal, D., Alonso, G., El Abbadi, A., Stanoi, I.: Exploiting atomic broadcast
in replicated databases. In: European Conference on Parallel and Distributed
Computing (Euro-Par). (1997) 496–503

8. Kemme, B., Alonso, G.: A suite of database replication protocols based on group
communication primitives. In: International Conference on Distributed Computing
Systems (ICDCS). (1998) 156–163

9. Dias, R.J., Vale, T.M., Lourenço, J.M.: Efficient Support for In-Place Metadata
in Transactional Memory. In: European Conference on Parallel and Distributed
Computing (Euro-Par). (2012) 589–600

10. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: International Sym-
posium on Distributed Computing (DISC). (2006) 194–208

11. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a flexible protocol kernel support-
ing multiple coordinated channels. In: Poster on the International Conference on
Distributed Computing Systems (ICDCS). (2001) 707–710

12. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transac-
tional Applications for Multi-Processing. In: IEEE International Symposium on
Workload Characterization (IISWC). (2008) 35–46

13. Kaashoek, M.F., Tanenbaum, A.S.: An Evaluation of the Amoeba Group Commu-
nication System. In: International Conference on Distributed Computing Systems
(ICDCS). (1996) 436–447

14. Pedone, F., Schiper, A.: Optimistic atomic broadcast: a pragmatic viewpoint.
Theoretical Computer Science 291(1) (2003) 79–101

