
João André Almeida e Silva

Licenciado em Engenharia Informática

Partial Replication in Distributed Software
Transactional Memory

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientadores : Hervé Miguel Cordeiro Paulino,
Prof. Auxiliar, Universidade Nova de Lisboa
João Manuel dos Santos Lourenço,
Prof. Auxiliar, Universidade Nova de Lisboa

Júri:

Presidente: Prof. Doutor João Alexandre Carvalho Pinheiro Leite

Arguente: Prof. Doutor Paolo Romano

Vogal: Prof. Doutor Hervé Miguel Cordeiro Paulino

Setembro, 2013

iii

Partial Replication in Distributed Software Transactional Memory

Copyright c© João André Almeida e Silva, Faculdade de Ciências e Tecnologia, Universi-
dade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Aos meus pais.

vi

Acknowledgements

I am thankful to my thesis advisers, Hervé Paulino and João Lourenço, not only for this
opportunity and for introducing me to the world of research, but also for their guidance,
advices and devotion during the elaboration of this thesis. I would also like to extend my
sincerest gratitude to Ricardo Dias and, specially, to Tiago Vale for their effort, help and
brainstorming, to whom I am greatly obliged.

I am grateful to Departamento de Informática, Faculade de Ciências e Tecnologia,
Universidade Nova de Lisboa for kindly granting me with three scholarships during the
M.Sc. course.

To my co-workers and friends who frequented the room of the Arquitectura de Sis-
temas de Computadores group (and not only), specially Helder Martins, Joana Roque,
Andy Gonçalves, Diogo Sousa, João Martins, Lara Luís and Laura Oliveira, for all the
moments of work, fun, procrastination and despair we shared. None of this would be
the same without their presence.

I would also like to express my gratitude to the Wroclaw Centre for Networking and
Supercomputing (WCSS) for providing me access to a testing environment.

To my parents, Luís and Glória, I am heartily thankful for their support and guidance
over the years, and specially for providing me with this opportunity. To my sister, Sara,
for her support and understanding in my bad humour days.

To all the people in my Scout group (Agrupamento 719 Arrentela), specially Patrícia
Correia, Hélder Marques, Joana Coelho and Sara Silva, for their support when I needed
the most and for all the moments of fun we shared, I am very thankful.

Finally, I wish to thank all my family and friends for being part of my life and their
endless support.

This work was partially supported by the Centro de Informática e Tecnologias da
Informação (CITI), and by the Fundação para a Ciência e Tecnologia (FCT/MCTES) in
the scope of the research project PTDC/EIA-EIA/113613/2009 (Synergy-VM).

vii

viii

Abstract

Distributed software transactional memory (DSTM) is emerging as an interesting al-
ternative for distributed concurrency control. Usually, DSTM systems resort to data dis-
tribution and full replication techniques in order to provide scalability and fault toler-
ance. Nevertheless, distribution does not provide support for fault tolerance and full
replication limits the system’s total storage capacity. In this context, partial data repli-
cation rises as an intermediate solution that combines the best of the previous two try-
ing to mitigate their disadvantages. This strategy has been explored by the distributed
databases research field, but has been little addressed in the context of transactional mem-
ory and, to the best of our knowledge, it has never before been incorporated into a DSTM
system for a general-purpose programming language. Thus, we defend the claim that it
is possible to combine both full and partial data replication in such systems.

Accordingly, we developed a prototype of a DSTM system combining full and partial
data replication for Java programs. We built from an existent DSTM framework and
extended it with support for partial data replication. With the proposed framework, we
implemented a partially replicated DSTM.

We evaluated the proposed system using known benchmarks, and the evaluation
showcases the existence of scenarios where partial data replication can be advantageous,
e.g., in scenarios with small amounts of transactions modifying fully replicated data.

The results of this thesis show that we were able to sustain our claim by implementing
a prototype that effectively combines full and partial data replication in a DSTM system.
The modularity of the presented framework allows the easy implementation of its vari-
ous components, and it provides a non-intrusive interface to applications.

Keywords: Partial Replication, Transactional Memory, Distributed Systems, Concur-
rency Control

ix

x

Resumo

A memória transacional por software distribuída (MTSD) é reconhecida como uma al-
ternativa interessante para controlo de concorrência distribuído. Estes sistemas fazem
uso de técnicas de distribuição e replicação total de dados, a fim de atingir requisitos
como escalabilidade e tolerância a falhas. No entanto, a distribuição dos dados não ofe-
rece tolerância a falhas e a replicação total limita a capacidade de armazenamento total
do sistema. Neste contexto, a replicação parcial de dados aparece como uma solução
intermédia que combina o melhor das duas anteriores tentando mitigar as suas desvan-
tagens. Esta estratégia tem sido explorada na área de investigação das bases de dados
distribuídas, mas tem sido pouco abordada no contexto da memória transacional e, tanto
quanto sabemos, nunca antes foi incorporada num sistema de MTSD para uma lingua-
gem de programação de propósito geral. Assim, nós defendemos que é possivel integrar
replicação total e parcial de dados em tais sistemas.

Como tal, desenvolvemos um protótipo de um sistema de MTSD para programas
Java que combina replicação total e parcial. Como ponto de partida utilizámos uma in-
fraestrutura já existente que foi estendida com suporte para replicação parcial. Com a
infraestrutura proposta, implementámos um sistema de MTSD replicado parcialmente.

O sistema proposto foi avaliado com benchmarks conhecidos, e a avaliação mostra a
existência de cenários onde a replicação parcial pode ser vantajosa, e.g., em cenários com
pequenas quantidades de transações que modificam dados replicados totalmente.

Os resultados desta tese mostram que fomos capazes de sustentar a nossa hipótese
através da implementação de um protótipo que efetivamente combina replicação parcial
e total de dados num sistema de MTSD. A modularidade da infraestrutura apresentada
permite a fácil implementação dos seus vários componentes e fornece uma interface não
intrusiva para as aplicações.

Palavras-chave: Replicação Parcial, Memória Transacional, Sistemas Distribuídos, Con-
trolo de Concorrência

xi

xii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Proposed Solution . 3
1.4 Contributions . 4
1.5 Publications . 4
1.6 Outline . 4

2 Related Work 7
2.1 Transactional Model . 7
2.2 Software Transactional Memory . 8

2.2.1 Semantics . 9
2.2.2 Implementation Strategies . 12

2.3 Distributed Software Transactional Memory 14
2.3.1 Support Mechanisms . 15
2.3.2 Full Replication Environment . 18
2.3.3 Partial Replication Environment . 22
2.3.4 Frameworks . 26

2.4 Summary . 30

3 TribuDSTM 33
3.1 TribuSTM . 33

3.1.1 Deuce . 34
3.1.2 External Strategy in Deuce . 35
3.1.3 In-Place Strategy in TribuSTM . 37

3.2 Putting the D in TribuDSTM . 39
3.2.1 Distributed Transactions . 41
3.2.2 Distributed Objects . 41
3.2.3 Communication System . 43

xiii

xiv CONTENTS

3.2.4 Bootstrapping . 44
3.3 Summary . 45

4 Supporting Partial Replication with TribuDSTM 47
4.1 Partial Replication Summarized . 47
4.2 Programming Model . 48

4.2.1 Limitations . 50
4.3 Runtime System Extensions to TribuDSTM 51

4.3.1 Communication System . 51
4.3.2 Groups . 52
4.3.3 Data Partitioning . 54

4.4 Implementing a Partially Replicated STM 55
4.4.1 Distributed Objects . 55
4.4.2 Distributed Transactions . 61

4.5 Summary . 67

5 Evaluation 69
5.1 Experimental Settings . 69

5.1.1 System Configurations . 70
5.2 Benchmarks . 71

5.2.1 Red-Black Tree Microbenchmark . 71
5.2.2 Adapted Vacation . 72
5.2.3 TPC-W . 73

5.3 Results . 73
5.3.1 Memory Consumption . 74
5.3.2 Impact of Data Partitioners . 76
5.3.3 ReadOpt Optimization . 76
5.3.4 Partial Replication versus Full Replication 77

5.4 Final Remarks . 84
5.5 Summary . 85

6 Conclusion 87
6.1 Concluding Remarks . 87
6.2 Future Work . 88

List of Figures

2.1 Two memory transactions (taken from [Har+10]). 10
2.2 Two memory transactions producing a write skew (taken from [Har+10]). . 11
2.3 Optimistic atomic broadcast (adapted from [Rui11]). 18
2.4 Certification-based protocols (taken from [Val12]). 21
2.5 Atomic commit protocol used in GMU. 25
2.6 DiSTM architecture (adapted from [Kot+08]). 26
2.7 Components of a D2STM replica (taken from [Cou+09]). 27
2.8 GenRSTM node architecture (taken from [Car+11a]). 28
2.9 HyFlow node architecture (taken from [SR11]). 29
2.10 TribuDSTM node architecture (taken from [Val12]). 30

3.1 Deuce’s programming model (taken from [Val12]). 35
3.2 Example of the modifications made for the external strategy (taken from [Val12]). 36
3.3 Algorithm implemented with both interfaces (taken from [Val12]). 38
3.4 Example of the modifications made for the in-place strategy (taken from [Val12]). 39
3.5 TribuDSTM architecture overview (taken from [Val12]). 40
3.6 Bootstrapping with the @Bootstrap annotation (taken from [Val12]). 45

4.1 Example of a Java heap graph. 49
4.2 Example using the @Partial annotation. 49
4.3 Example of a partially replicated linked list. 50
4.4 Content of the partial replication distribution metadata. 56
4.5 Distribution metadata with the partialGroup and group variables. . . 57
4.6 Pseudo-code of the replicated objects’ serialization algorithm. 59
4.7 Pseudo-code for checking group restrictions in every (transactional) write

operation. 60
4.8 Pseudo-code for commit invocation in TribuSTM. 63
4.9 Pseudo-code for the commit phase of the SCORe protocol. 66
4.10 Pseudo-code for the read event of the SCORe protocol. 68

xv

xvi LIST OF FIGURES

5.1 Fixed sequencer. 71
5.2 Annotation @Partial applied in tree node. 72
5.3 Memory consumption on the Red-Black Tree microbenchmark (Cluster@DI). 74
5.4 Memory consumption on the Adapted Red-Black Tree version 1 microbench-

mark (Cluster@DI). 75
5.5 Throughput and remote reads percentage on the Red-Black Tree microbech-

mark (Cluster@DI). 76
5.6 Execution time and remote reads percentage on the Adapted Vacation bench-

mark (Cluster@DI). 77
5.7 System’s throughput with 100% read-only transactions on the Red-Black

Tree microbenchmark (Cluster@DI). 78
5.8 System’s throughput with 10% write transactions on the Red-Black Tree

microbenchmark (Cluster@DI). 79
5.9 System’s throughput using mixed behaviour benchmarks (Cluster@DI). . 79
5.10 System’s throughput with 10% write transactions on the Adapted Red-

Black Tree version 2 microbenchmark (Cluster@DI). 80
5.11 System’s throughput with higher percentages of write transactions on the

Adapted Red-Black Tree version 2 microbenchmark (Cluster@DI). 81
5.12 System’s throughput with 10% write transactions on the Adapted Red-

Black Tree version 2 microbenchmark (Supernova). 81
5.13 Execution breakdown on the Red-Black Tree microbenchmark (Cluster@DI). 82
5.14 Execution times breakdown on the Red-Black Tree microbenchmark (Clus-

ter@DI). 83
5.15 Read operation done by TL2 and by SCORe. 84

List of Tables

3.1 Operations provided by the reflexive API (taken from [Val12]). 41
3.2 Operations provided by the actuator API (taken from [Val12]). 42
3.3 Operations provided by the distributed object API (taken from [Val12]). . 43
3.4 Interface provided by the GCS to the DT (taken from [Val12]). 44
3.5 Interface provided by the DT to the GCS (taken from [Val12]). 44

4.1 Extended interface provided by the GCS to the DT. 51
4.2 Extended interface provided by the DT to the GCS. 52
4.3 Operations provided by the group API. 53
4.4 Interface provided by the GP to the DM. 54
4.5 Interface provided by the DP to the DM. 55
4.6 Operations provided by the partial replication distribution medatata API. 57

5.1 Specifications of the Supernova cluster nodes. 70
5.2 Parametrization of the Red-Black Tree microbenchmark. 72
5.3 Parametrization of the Vacation benchmark. 73
5.4 Parametrization of the Adapted Red-Black Tree version 1 microbenchmark. 75

xvii

xviii LIST OF TABLES

1
Introduction

This thesis addresses partial data replication in distributed software transactional mem-
ory (DSTM) systems. Although this technique has already been used and experimented
in distributed database management systems (DBMSs), there are significant differences
which justify our work.

In this chapter we motivate this thesis, presenting the layout of our approach, and
listing the main contributions achieved.

1.1 Motivation

Nowadays, distributed software architectures are a widely used solution either by the
distributed nature of applications, given the increasing use of mobile devices and the
ubiquity of the Internet, or by the need to ensure quality of service regarding availabil-
ity and latency, which usually leads to the use of multiple data centers where data is
replicated and geographically dispersed.

The services provided by these architectures commonly address requirements such as
availability and fault tolerance using data distribution and replication techniques. Data
distribution appeared as a means of workload distribution. This technique maximizes the
system’s total storage capacity, but provides no fault tolerance support, since the failure
of a single node causes inevitable data loss. To that extent, full data replication appeared
as a technique to provide fault tolerance on top of workload distribution. It maximizes
data survival, but limits the system’s total storage capacity to the capacity of the node
with fewer resources. In this context, partial data replication is a more recent solution
that tries to find a middle ground between distribution and full replication. To that end,
each node replicates only a subset of the system’s data.

1

1. INTRODUCTION 1.2. Problem

Geo-replicated systems usually use a combination of both full and partial data repli-
cation. These systems, comprised by multiple data centers, have an integral copy of the
entire data set in each data center and inside the data centers use partial replication, dis-
persing data among the available nodes. This combination provides fault tolerance, both
inter and intra data center, and high availability. These systems manage huge amounts
of data and usually require the management of concurrent accesses to shared data, thus
requiring concurrency control mechanisms.

In this context, DSTM is emerging as an interesting research topic. It builds from
the application of software transactional memory (STM), proposed in 1995 by Shavit and
Touitou [ST95], to the distributed setting, presenting an alternative for distributed con-
currency control.

STM is based on the transactional model, which was originally proposed in the da-
tabase world. Its basic unit of work is an atomic action encasing one or more operations
(accessing shared memory) that execute with an all-or-nothing semantics, i.e., either all
operations succeed and execute as a single indivisible and instantaneous action, or none
execute at all.

More recently, research in the STM field has addressed requirements such as scala-
bility and dependability, bringing attention to the distributed setting [Cou+09; Kot+08;
Man+06]. To that purpose, existing STM systems have been extended with communi-
cation layers, protocols for memory consistency, replication and distribution manage-
ment, and so forth, creating DSTM systems. Many of these systems have been developed
tackling just some of these components, and only recently some DSTM frameworks ad-
dressed all components through modularity [Car+11a; SR11; Val12]. The majority of the
proposed frameworks are tied to an unique distributed memory model, e.g., data distri-
bution or full data replication. Both models allow systems to scale since the workload can
be distributed among multiple nodes, and full data replication provides fault tolerance
since data is replicated. Then, a distributed memory model that combines the best of both
worlds would be very desirable. Nonetheless, all of this must be weighted against the
costs involved in synchronization, after all, where there is replicated data there has to be
consistency.

1.2 Problem

Full data replication requires data updates to be propagated to all the nodes in the system,
since each node has a full copy of the system’s data and that replicated data must be
coherent between nodes. This solution raises scalability issues, considering that, most
likely, it will not scale in systems with many nodes. Furthermore, it may also become
infeasible to have a full copy of the system’s data in every node. As data grows, the load
on each node’s virtual memory management may require systematic use of swapping,
degrading the system’s overall performance. In fact, at some point, nodes may simply
not have the resources required to store all the system’s data.

2

1. INTRODUCTION 1.3. Proposed Solution

In recent past, partial data replication [Alo97] has emerged. With this distributed mem-
ory model, each data item is replicated on a subset of the system’s nodes, and no node
has all the system’s data. In a system with these characteristics, a transaction necessarily
involves multiple nodes, more precisely, the nodes that have a copy of the data items ac-
cessed by the transaction. Since different transactions may access different data items, the
set of nodes involved in each transaction are not necessarily the same, although they may
not be disjoint. This can improve the scalability of replicated systems since updates only
need to be applied to a subset of the system’s nodes, allowing these to handle indepen-
dent parts of the workload in parallel. Since updates only need to be sent to a subset of
the system’s nodes, less messages are sent through the network and the synchronization
cost becomes smaller. Considering this, we can leverage from locality inside data centers
(where data is usually partially replicated and require strong consistency properties), as
the propagation of updates can be further confined to a subset of the system’s nodes and
not disseminated throughout the whole data center.

To the best of our knowledge, until this moment there are no implementations of
DSTM systems harnessing partial data replication. Thus far, DSTM research has only
addressed data distribution and full replication. Some partial replication protocols have
already been proposed [Pel+12a; Pel+12b] and were applied in the context of data-grids
(with support for transactions), but not in a DSTM system. It is then desirable to explore
partial data replication in the context of DSTM, allowing the assessment of to what extent
it is feasible and effective in this context and in which contexts of use (workloads, number
of nodes, etc.) partial data replication is a better option than other strategies.

When tackling partial data replication in a DSTM system for a general-purpose pro-
gramming language, we found the following main challenges: (1) what data items should
be partially replicated; (2) how the partially replicated data items should be partitioned
among the system’s nodes; (3) how to identify and access remote data items; and (4)
how to validate transactions in this type of environments. We propose solutions to these
challenges throughout this document.

1.3 Proposed Solution

In this thesis we address the problem of implementing a modular DSTM system for a
general-purpose programming language, namely Java, providing partial data replication
as a possible distributed memory model. We claim that it is possible to combine both
full and partial data replication in a DSTM system for a general-purpose programming
language.

In our system, we use both full and partial data replication in a collaborative manner,
allowing the programmer to decide what data should be full or partially replicated. Our
main goal is to provide a non-intrusive programming model to applications and a mod-
ular framework allowing the implementation of its various components (particularly the

3

1. INTRODUCTION 1.4. Contributions

data partitioning algorithms and the distributed validation protocols) supporting differ-
ent combinations of both full and partial replication.

A DSTM framework with support for partial data replication can be naturally imple-
mented by extending an existing DSTM framework. So, our system grows from previous
work, namely TribuDSTM [Val12], a modular DSTM framework for Java that targets fully
replicated environments. We extend TribuDSTM with new partial replication-specific
components, regarding data and nodes’ partitioning, and a new kind of distribution
metadata that enable the system to process (remote) read operations of objects that are
not locally replicated.

TribuDSTM provides a non-intrusive programming model, by rewriting the bytecode
of application classes. Our extension to support partial data replication continues to be
non-intrusive to applications, by performing additional instrumentation.

1.4 Contributions

This thesis describes the following contributions:

• The definition of software components that extend TribuDSTM [Val12] to support
partial data replication in a modular fashion;

• An implementation of a DSTM system with support for partial data replication
based on the aforementioned extensions, creating a system that offers a combina-
tion of full and partial data replication;

• An implementation of an algorithm, from the literature (SCORe [Pel+12a]), for dis-
tributed transactions validation and commit in transactional memory (TM) systems
harnessing partial data replication; and

• An experimental evaluation of the implementation on a common microbenchmark,
as well as on more complex benchmarks, allowing initial insights on the contexts of
use (workloads, number of nodes, etc.) that best suit partial data replication.

1.5 Publications

Some of the contributions have been published prior to this thesis. The DSTM framework
was featured in the article “Replicação Parcial com Memória Transacional Distribuída”,
Proceedings of the Simpósio de Informática (INForum), 2013 [Sil+13].

1.6 Outline

In this chapter, we introduced our work. We started by presenting the motivations and
the layout of our proposed solution. We also presented the contributions featured in this
thesis.

4

1. INTRODUCTION 1.6. Outline

The rest of this document is organized as follows. In Chapter 2, we present the work
related with this thesis. We begin by introducing the reader to the transactional model
and its properties. Next, we lay the basis of STM, whose semantics and implementation
strategies we present afterwards. Later, we discuss the existing techniques that enable
DSTM, analysing the existing protocols and exploring new ideas from recent research.
Chapter 3 introduces the TribuSTM framework and its evolution to the distributed set-
ting, TribuDSTM. Since TribuDSTM was the starting point of our work we dedicate this
chapter to the overviewing of both systems. Next, in Chapter 4, we describe the ex-
tensions done to TribuDSTM in order to support the partial data replication distributed
memory model. We also provide a detailed overview of our implementation of a par-
tially replicated STM using the extended framework. In Chapter 5, we present the results
of our experimental evaluation study. Finally, Chapter 6 concludes this thesis with an
overview of its main points and future work directions.

5

1. INTRODUCTION 1.6. Outline

6

2
Related Work

In order to better understand the contents of this document it is essential to be aware of
the subjects relevant to our work. To this extent, in this chapter we describe the work that
more closely relates to this thesis.

We start by introducing the concept of transaction and its properties, in Section 2.1.
Then, in Section 2.2, we describe the concept of STM which aims at bringing transactions
from database into memory. We continue by presenting its semantics and implementa-
tion strategies. Lastly, in Section 2.3, we describe DSTM as an alternative for distributed
concurrency control. We introduce the issues that arise from the distributed setting, some
mechanisms that support that setting, followed by a survey of the state of the art in dis-
tributed commit and memory consistency protocols, for both full and partial data repli-
cation environments. Finally, we still do an overview of the state of the art in DSTM
frameworks.

2.1 Transactional Model

Nowadays, general-purpose programming languages have powerful abstractions for se-
quential programming, but that is not the case when it comes to concurrent program-
ming where explicit synchronization is required, making programs very cumbersome
and error-prone.

For years, databases have been taking advantage of the performance achieved through
parallelism. Most DBMS make use of transactions to free the programmer from synchro-
nization concerns.

Transactions are in the core of the database programming model. A database trans-
action is an abstraction that encapsulates a sequence of operations (over a database), that

7

2. RELATED WORK 2.2. Software Transactional Memory

execute with an all-or-nothing semantics, i.e., either all operations succeed and execute
as a single indivisible and instantaneous action or none execute at all. In the database
world a transaction is characterized by four attributes: atomicity, consistency, isolation and
durability, known as the ACID properties [GR92; HR83]:

Atomicity Either every operation in a transaction succeeds (and the transaction suc-
ceeds) or none will, i.e., if one operation fails, the entire transaction fails and the
database is left unchanged;

Consistency The database is always in a consistent state (the meaning of consistent state
is entirely application dependent). The commit of a transaction will bring the data-
base from a valid state to another valid state, according to all defined rules;

Isolation Concurrent transactions are unaware of each other’s presence. The effects of a
transaction that is in progress are hidden from the remainder, i.e., a transaction is
not allowed to observe the internal, and possibly inconsistent, state of other trans-
actions; and

Durability Once a transaction has been committed, its results are persistent in the data-
base (are stored in persistent storage, e.g., hard disk) and are made available to the
following transactions.

In 1977, Lomet explored the notion of an atomic action as a method of process struc-
turing [Lom77]. He observed that these properties make transactions an interesting alter-
native to explicit synchronization. If a sequence of operations accessing shared memory
was encapsulated in a transaction, the atomicity property would guarantee that all oper-
ations succeed or the transaction would fail. In turn, the isolation property would guar-
antee that each transaction would run with the illusion that it is the only one executing
at that time, like in the sequential model.

2.2 Software Transactional Memory

The transaction concept is vastly used in the database world, but in order to bring this
concept into memory we must consider the differences between these two worlds.

Database transactions access persistent data (e.g., in a hard disk), but memory trans-
actions access data in volatile memory. The durability property requires database trans-
actions to record their changes permanently into persistent storage, but memory trans-
actions are not durable in that sense, since data in memory only exists as long as the
program is running. So this property is dropped when tackling transactions in memory.

Data inside a database can only be modified using transactions in the DBMS. In turn,
memory transactions modify data from a process’ memory. Since the DBMS has exclusive
control over the database data it can enforce the consistency property. But when dealing
with transactions in memory the “transactional system” does not control the memory

8

2. RELATED WORK 2.2. Software Transactional Memory

exclusively, so data can be accessed in a non-transactional way, thus possibly making the
memory inconsistent.

TM was originally coined by Herlihy and Moss in 1993 [HM93]. They defined a trans-
action, in this context, to be a finite sequence of machine instructions, executed by a single
process, satisfying two properties: serializability, i.e., the steps of one transaction never ap-
pear to be interleaved with the steps of another transaction, and atomicity (as explained
in Section 2.1). In this proposal, the authors introduced new primitive instructions for
accessing memory in a transactional way. The TM system was implemented by modify-
ing a processor’s cache and cache controller. Thus being the first proposal of hardware
transactional memory (HTM).

Two years later, in 1995, Shavit and Touitou proposed a new approach [ST95], based
on the hardware transactional synchronization methodology of Herlihy and Moss. The
authors introduced STM, a programming model for general-purpose programming, based
on the transactional model described previously.

2.2.1 Semantics

To better understand STM we start by introducing its behaviour and presenting some
related terminology.

Being based on the transactional model, a transaction is the basic unit of work. In
the context of TM, a transaction is a sequence of memory read and write operations that
execute as a single indivisible and instantaneous operation, thus executing atomically.
That means that theoretically it is as if one and only one transaction is executing at any
given point in time. A transaction that completes successfully commits and one that fails
aborts. The set of locations that a transaction has read from is referred as its read set, and
the set of locations that it as written to as its write set.

Consider the two transactions in Figure 2.1, where initially x = y = 01. T1 increments
the value of both x and y variables, while T2 will loop forever if x 6= y. Conceptually no
two transactions execute simultaneously, so this means there are two possible outcomes
of the concurrent execution of these two transactions: (1) either T1 executes before T2,
or (2) T2 executes before T1. Either way, T2 would never loop because when it executes,
the possible outcomes are

x = y = 1 for case (1)

x = y = 0 for case (2)

A programming abstraction with a simple and clean semantics helps the programmer
to better understand the programming construct. However, transactions have no agreed
semantics [Har+10] although some attempts have been made [Aba+08; GK08; MG08].
Being so, there are several definitions used to describe the semantics of transactions.

1Throughout this document, unless stated otherwise, variables are assumed to be initialized with the
value 0 (zero).

9

2. RELATED WORK 2.2. Software Transactional Memory

transaction {
x = x + 1
y = y + 1

}

(a) Transaction 1 (T1).

transaction {
while (x 6= y) {}

}

(b) Transaction 2 (T2).

Figure 2.1: Two memory transactions (taken from [Har+10]).

Since the database world and the TM world share the concept of transaction, many
database semantics can be applied to TM. The basic correctness condition for concurrent
transactions is serializability [Esw+76; Har+10]. It states that the concurrent execution of
transactions must be equivalent to some sequential execution of those same transactions.
Even though serializability requires that transactions appear to run in a sequential order,
that order does not need to be the real-time order in which they run, i.e., the system
is free to reorder or interleave transactions, as long as the resultant execution remains
serializable. Consider, for instance, two transactions, TA and TB , being that TA executes
before TB . Respecting serializability, transaction TA can appear to run after transaction
TB (even if its execution comes completely before TB).

With this freedom comes the need for a stronger criterion, the strict serializability cri-
terion [Har+10]. It requires that if a transaction completes before another starts, then the
first must occur before the second in the equivalent sequential execution, e.g., if transac-
tion TA actually completes before transaction TB starts, in every serialization order, TA

must appear before TB .

Another criterion is linearizability [Har+10; HW90]. It states that, considering a trans-
action as a single operation, each transaction must appear to execute atomically at some
point during its lifetime.

Weaker correctness criteria allow higher concurrency between transactions, by al-
lowing non-serializable executions to commit. Snapshot isolation (SI) [Dia+11; Har+10;
Rie+06] is one of those criteria. The key idea is that each transaction takes a memory
snapshot at its start and then performs all read and write operations on its snapshot.

Figure 2.2 illustrates an example of a possible non-serializable execution. Consider
two transactions, T3 and T4, which evaluate the same expression

x+ y + 1

writing the subsequent result to different memory locations, labelled x and y, respec-
tively. Under serializability, two results are possible

x = 1 and y = 2 if T3 executes before T4

x = 2 and y = 1 otherwise

10

2. RELATED WORK 2.2. Software Transactional Memory

SI admits a third result which would be impossible under serializability

x = 1 and y = 1

in which both transactions begin with the same snapshot and commit their disjoint up-
date sets. This anomaly is called a write skew.

transaction {
x = x + y + 1

}

(a) Transaction 3 (T3).

transaction {
y = x + y + 1

}

(b) Transaction 4 (T4).

Figure 2.2: Two memory transactions producing a write skew (taken from [Har+10]).

These correctness criteria, taken from databases, can be applied to TM and they pro-
vide some intuition for the semantics of TM systems, but they fall short in two main
areas: (1) they specify how committed transactions behave, but they do not define what
happens while a transaction runs, and (2) criteria such as serializability assume that the
database mediates on all access to data, and so they do not consider cases where data is
sometimes accessed by non-transactional code.

One last correctness criterion is opacity [GK08; Har+10], that provides stronger guar-
antees about the consistency of the values read by a transaction. Opacity can be viewed as
an extension to the classical database serializability criterion with the additional require-
ment that even non-committed transactions are prevented from accessing inconsistent
states. It states that (1) all operations performed by every committed transaction appear
as if they happened at some single, indivisible point during the transaction lifetime, (2)
no operation performed by any aborted transaction is ever visible to other transactions
(including live ones), and that (3) every transaction (even if aborted) always observes a
consistent state of the system.

As stated above, the presented criteria do not consider the behaviour resultant from
transactional and non-transactional access to the same data. But as STM is pushing its
way into the general-purpose programming world, it has to cope with these mixed-mode
accesses to data. This behaviour is defined by two concepts called weak and strong atom-
icity [Blu+06; Har+10].

Weak atomicity is a semantics in which transactions are atomic only with respect to
other transactions, i.e., their execution may be interleaved with non-transactional code.
Whereas strong atomicity is a semantics in which transactions execute atomically with
respect to both other transactions and non-transactional code, treating each operation
appearing outside a transaction as its own singleton transaction.

In short, serializability provides higher concurrency than linearizability, because it al-
lows more freedom in reordering the operations of a transaction. Snapshot isolation is
good for short read-write transactions (that conflict minimally) and long read-only trans-
actions, but the semantics is not as intuitive as the others. Regarding non-transactional

11

2. RELATED WORK 2.2. Software Transactional Memory

access to data, there is a trade-off. Strong atomicity provides strong consistency guar-
antees in exchange for implementations with less performance, whereas weak atomicity
provides weaker consistency guarantees in exchange for implementations with better
performance.

2.2.2 Implementation Strategies

Even for simple TM systems, many implementations are possible. Next, we introduce
the main design choices to be considered when implementing semantics as the ones pre-
sented previously.

Since transactions execute concurrently, in parallel if possible, there is the need to
control the concurrent access to shared data. A conflict occurs when two transactions
operate on the same data item and at least one of them is a write (SI has a slightly different
definition of conflict, since it circumvents read-write conflicts). The conflict is detected
when the TM system determines that the conflict has occurred and takes measures to
resolve it, executing some action to avoid the conflict, e.g., by delaying or aborting one
of the conflicting transactions. These three events (conflict, detection and resolution) can
occur at different times (but not in a different order) and be managed in different ways.

All the definitions in this section are based in [Har+10].

2.2.2.1 Concurrency Control

With pessimistic concurrency control, all three events occur upon data access. When a
transaction accesses some shared data item, the system detects a conflict and resolves
it. This type of concurrency control allows a transaction to claim exclusive ownership of
data prior to proceeding, preventing other transactions from accessing it. This is usually
achieved using a lock per piece of shared data. Implementations that use locks should
ensure that transactions progress. In particular, deadlocks should be taken care of. A
deadlock is a situation in which two or more competing actions hold at least a lock and
request additional locks which are being held by another action (in a circular chain), and
thus neither ever does, e.g., transaction TA holds a lock L1 and requests lock L2, while
transaction TB holds L2 and requests L1.

With optimistic concurrency control, conflict detection and resolution can happen after
the conflict’s occurrence. This type of concurrency control allows multiple transactions
to access data concurrently and to continue running even when they conflict, as long as
the TM system is able to detect and resolve these conflicts before a transaction commits.
Instead of deadlocks, these implementations should take care of livelocks. A livelock is
similar to a deadlock, in the sense that prevents the involved actions to progress. How-
ever, in such cases the state of these actions constantly changes. For example, transaction
TA writes to x, then conflicts with transaction TB which forces TB to be aborted, where-
upon TB may restart, write to x, forcing TA to be aborted, none of them progressing.

If a certain application’s workload has many long-living transactions, then pessimistic

12

2. RELATED WORK 2.2. Software Transactional Memory

concurrency control can be advantageous: once a transaction acquires the locks it needs,
it will be able to run to completion, and it will not be continuously aborted due to a stream
of short-living transactions. However, if the workload is more homogeneous (in terms of
transaction’s duration), optimistic concurrency control can be a better choice because it
avoids the cost of locking and can increase concurrency between transactions. Other as-
pect is contention. Workloads with high contention favour pessimistic approaches while
low contention favour optimistic ones.

2.2.2.2 Conflict Detection

With pessimistic concurrency control, conflict detection is straightforward due to the use
of locks, since a lock can only be acquired when it is not already held by another thread-
/entity. But, in systems with optimistic concurrency control, conflict detection can have
various implementations. For instance, a conflict can be detected upon data access (like
with pessimistic concurrency control). This approach is called eager conflict detection. An-
other implementation strategy is to detect conflicts in a validation phase, at which point
a transaction checks all previously read and written locations for concurrent updates.
Validation can occur at any time, or even multiple times, during a transaction’s lifetime.

Contrary to eager conflict detection, lazy conflict detection detects conflicts on commit.
Upon the attempt of a transaction to commit, its read and write sets are checked for
conflicts with other transactions.

With regard to the kind of accesses that are treated as conflicts, optimistic concurrency
control can be exploited in two ways. The system can identify conflicts only between
concurrent running transactions. If so, the system uses tentative conflict detection, e.g., if
transaction TA has read x and transaction TB writes to x, that is a conflict, even before
either transactions commit. On the other hand, if the system considers conflicts between
active and committed transactions, it uses committed conflict detection, e.g., in this case,
TA and TB can continue in parallel, and a conflict is only detected when one of them
commits.

Usually, eager mechanisms are coupled with tentative conflict detection, while lazy
mechanisms are coupled with committed conflict detection.

There is a trade-off between mechanisms that avoid wasted work (i.e., where a trans-
action executes work that is eventually aborted) and mechanisms that avoid lost concur-
rency (i.e., where a transaction is stalled or aborted, even though it would eventually
commit). Eager conflict detection tries to avoid wasted work by detecting conflicts early,
but it can cause livelocks. Lazy conflict detection allows for higher concurrency, but al-
lows for more wasted work.

2.2.2.3 Version Management

Since transactions cannot observe each other’s intermediate state, according to the iso-
lation property, TM systems require mechanisms to manage the tentative updates that

13

2. RELATED WORK 2.3. Distributed Software Transactional Memory

transactions do. The first approach is eager version management. It is also known as direct
update, since a transaction directly modifies the data in memory, and maintains an undo-
log with a backup of the original values, allowing the original values to be restored if ever
the transaction aborts. This strategy requires the use of pessimistic concurrency control,
since transactions must acquire exclusive access to the memory locations they update.

The second approach is lazy version management. Also known as deferred update be-
cause the updates are delayed until the transaction commits. This approach maintains
its tentative updates in a per transaction redo-log that stores the transaction’s tentative
updates. This log must be consulted by the corresponding transaction’s read operations
to obtain the most fresh value if it has been updated. When the transaction commits,
it updates the actual memory locations from its redo-log. If the transaction aborts, the
redo-log is simply discarded.

Eager version management requires the use of locks, which must be held until the
transaction commits. With lazy version management, if a transaction commits, the new
values have to be written into memory (with the difference that the transactional reads
must consult the redo-log). In a workload with many long-living transactions, the eager
approach is likely to be more advantageous since locks must be held for the correspond-
ing memory locations until the end of the transactions, not allowing other (short-living)
transactions to access these memory locations (and continuously abort the long transac-
tions).

2.3 Distributed Software Transactional Memory

In the last decade, STM has been the subject of increasing research and it has proven that
it is a viable alternative for concurrency control. As the TM and the database worlds share
the concept of transaction, STM began to adopt (and adapt) the existing solutions used
in databases to main memory management. And in order to use STM in the enterprise
world, where systems are subjected to heavy workloads and unexpected failures, it faces
requirements such as scalability, high availability and fault tolerance. For those reasons,
the distributed counterpart of STM (DSTM) has also been proposed as an alternative for
distributed concurrency control. And although STM has received much interest over the
last decades, only recently the distributed setting has begun to draw attention, in order
to enhance dependability and performance.

Supporting DSTM raises several issues. First of all, the distributed nature of the un-
derlying physical support requires some sort of communication layer. And then, some key
questions arise. Will data be located in every single node or just in a subset of these? How
should transactions be validated and committed? Several approaches have been proposed
to these questions. The communication layer can range from a group communication sys-
tem (GCS) to regular network messaging. Data is either centralized, distributed or fully
replicated, with transaction validation and commit protocols tailored for each specific
approach.

14

2. RELATED WORK 2.3. Distributed Software Transactional Memory

As noted, STM systems share some resemblance with DBMS. Both are built from the
transaction concept and control concurrent data accesses automatically. However, they
also have some significant differences.

The execution time of memory transactions is significantly smaller than database
transactions since they only access data in memory, thus not incurring in the expensive
persistent storage accesses done by the latter [Rom+08]. Moreover, SQL parsing and plan
optimization are absent in STM. In distributed DBMS all this makes the remote synchro-
nization somewhat expensive. In turn, in DSTM systems the remote synchronization
needs to be optimized, in order not to become too big of an overhead (regarding the
execution time of a memory transaction being usually small).

Nonetheless, replicated and distributed databases can be a source of inspiration when
developing DSTM systems, regarding memory consistency algorithms, replication tech-
niques, and so on. Therefore, we now present some replication techniques that, even
though they were originally proposed for the database field, can be applied when tack-
ling the distributed setting of STM.

2.3.1 Support Mechanisms

Data distribution consists in partitioning data among the multiple nodes of the system
without resorting to replication, thus increasing the amount of data that the system can
store, and dividing the workload by the same nodes. Rarely, a transaction needs to access
all of the system’s data, so it does not need to be validated by every node. This allows
the system to scale more easily, but on the other hand, the failure of a node can lead to
the loss of that node’s data.

Data replication is a technique that consists in creating and maintaining multiple
copies of the system’s data across multiple nodes, called replicas. By maintaining con-
sistent replicas, one can increase the system’s availability and fault tolerance, and si-
multaneously improve the system’s performance by splitting the workload among the
replicas.

Replication and distribution allow for systems to scale since the workload can be
distributed among multiple nodes. Furthermore, it enables parallelism, naturally at the
expense of synchronization costs in order to ensure data coherence between replicas.

The replication and distribution of STM systems across multiple machines require
some support mechanisms regarding communication and remote validation and commit.
We now present some popular mechanisms that support these techniques.

2.3.1.1 Two Phase Commit

The two phase commit (2PC) algorithm [Gra78] is the simplest algorithm for coordinating
all the processes that participate in a distributed transaction, to decide whether to commit
or abort the transaction. It can be seen as a type of consensus protocol. The process that
submits the transaction works as the coordinator and the remainder as participants.

15

2. RELATED WORK 2.3. Distributed Software Transactional Memory

As the name suggests, the algorithm has two phases. In the first phase, also called vot-
ing/prepare phase, the coordinator announces the transaction to the participants. When
the participants receive the transaction’s read and write sets, each one tries to validate
the transaction. Then, each participant replies to the coordinator with its vote (yes to
commit, no to abort). The voting phase ends when the coordinator receives all the partic-
ipants’ votes. In the second phase, also called decision/commit phase, there can be two
outcomes. If all the participants voted yes, the coordinator sends a commit message to all
of them. Each participant completes its transaction and sends an acknowledge message
back to the coordinator. The coordinator completes the transaction when it receives all
the participants’ acknowledge messages. In turn, if any of the participants voted no, the
coordinator sends an abort message to all them. Each of the participants locally aborts its
transaction and sends an acknowledge message back to the coordinator, which in turn,
aborts the transaction when it receives all the participants’ acknowledge messages.

At each node, all the data modified by the transaction must be “locked” in the first
phase and “unlocked” at the end of the second phase.

The big disadvantage of this algorithm is that it is a blocking algorithm. Being so, if
the coordinator fails in-between the two phases of a commit operation, some participants
may never receive the response to its voting. Thus, preventing further transactions to
commit. The three phase commit (3PC) algorithm [Ske82] adds one more phase to the
protocol in order to avoid this situation.

2.3.1.2 Group Communication System

A GCS [Cho+01] is a software layer that offers communication primitives and provides
some guarantees about reliable communication. These systems ensure that all the mem-
bers in a group (of processes) receive a copy of the message sent to the group, usually
allowing different ordering guarantees. These guarantees assure that all group members
receive the same set of messages and every member agrees in the global message delivery
order.

We now present the guarantees and properties of some communication primitives
offered by common GCSs.

Atomic Broadcast Atomic broadcast (ABcast), also known as total order broadcast (TOB)
[Déf+04], is a group communication primitive that allows the emission of a message to
all registered processes with the guarantee that all of them will agree on the delivered
set of messages and on the order in which they are delivered. ABcast can be defined
through the TO-broadcast and TO-deliver primitives2. This primitive has the fol-
lowing properties:

2We denote TO-broadcast and TO-deliver when broadcasting and delivering messages with the
TOB primitive. R-broadcast and R-deliver are analogous but for the reliable broadcast primitive, and
A-multicast and A-deliver are analogous but for the atomic multicast primitive.

16

2. RELATED WORK 2.3. Distributed Software Transactional Memory

Validity If a correct process TO-broadcasts a message m, then it eventually TO-delivers
m;

Uniform Agreement If a process TO-delivers a message m, then all the correct processes
eventually TO-deliver m;

Uniform Integrity For any message m, every process TO-delivers m at most once, and
only if m was previously TO-broadcasted by sender(m)3; and

Uniform Total Order If processes p and q both TO-deliver messages m and m′, then p
TO-delivers m before m′, if and only if q TO-delivers m before m′.

Being uniform means that the property does not only apply to correct processes, but
also to faulty ones, e.g., with uniform integrity, a process is not allowed to deliver a
message m twice, even if it is faulty.

Reliable Broadcast A broadcast primitive that satisfies all the properties stated above
except uniform total order (i.e., that provides no ordering guarantees) is called reliable
broadcast (RBcast) [CT96; Déf+04]. Its properties are defined through the R-broadcast
and R-deliver primitives.

Optimistic Atomic Broadcast The ABcast primitive offers strong ordering guarantees,
but that comes at a cost. Its implementation is very costly, because it needs a great num-
ber of communication steps and messages, thus introducing a significant latency in de-
livering the messages. The main goal of optimistic atomic broadcast (OABcast) [PS98]
is to minimize the latency problems of ABcast. The idea is that, with high probability,
messages broadcasts in a local area network are received totally ordered (e.g., like when
network broadcast or IP-multicast are used). This is called the spontaneous total order prop-
erty. Messages are optimistically delivered to the application as soon as they are received,
so the application overlaps the messages’ processing with the communication needed to
ensure the messages’ total order. Later, the messages are finally delivered (TO-delivered)
in their final order. So, OABcast has an additional primitive, Opt-deliver, that delivers
a message optimistically to the application. This primitive has the following properties:

Termination If a process TO-broadcasts a message m, then it eventually Opt-delivers m;

Global Agreement If a process Opt-delivers a message m, then all the processes eventu-
ally Opt-deliver m;

Local Agreement If a process Opt-delivers a message m, then it eventually TO-delivers
m;

3We assume that every message m can be uniquely identified, and carries the identifier of its sender,
denoted by sender(m).

17

2. RELATED WORK 2.3. Distributed Software Transactional Memory

Global Order If processes p and q both TO-deliver messages m and m′, then p TO-delivers
m before m′, if and only if q TO-delivers m before m′; and

Local Order A process first Opt-delivers a message m and only then it TO-delivers m.

Figure 2.3 shows the advantage of OABcast against ABcast. If the spontaneous order
is equal to the final order, it is possible to save time. And the probability of the final order
to be equal to the spontaneous order is very high when all nodes are interconnected in
the same local network segment [Rod+06].

ABcast

OABcast

TO-broadcast(m) TO-deliver(m)

Opt-deliver(m) time

time saved

Figure 2.3: Optimistic atomic broadcast (adapted from [Rui11]).

Atomic Multicast The atomic multicast (AMcast) [Sch+10] is a variation of the ABcast
primitive. While ABcast sends messages to all processes, AMcast allows the sending of
messages to a subset of the existing processes. Similarly to ABcast, AMcast also guaran-
tees that all the processes will agree on the delivered set of messages and on the order
in which they are delivered. AMcast can be defined through the A-multicast and A-

deliver primitives. For every message m, m.dst denotes the group of processes to which
m is multicasted. This primitive has the following properties:

Validity If a correct process p A-multicasts a message m, then eventually all correct pro-
cesses p′ ∈ m.dst A-deliver m;

Uniform Integrity For any process p and any message m, p A-delivers m at most once,
and only if p ∈ m.dst and m was previously A-multicasted;

Uniform Agreement If a process p A-delivers a message m, then eventually all correct
processes p′ ∈ m.dst A-deliver m; and

Uniform Prefix Order For any two messages m and m′ and any two processes p and p′

such that {p, p′} ⊆ m.dst∩m′.dst, if p A-delivers m and p′ A-delivers m′, then either
p A-delivers m′ before m or p′ A-delivers m before m′.

2.3.2 Full Replication Environment

Replication is a natural way to deal with failures: if one replica fails, another one takes
over. It offers fault tolerance and it also allows to increase the system’s throughput by

18

2. RELATED WORK 2.3. Distributed Software Transactional Memory

splitting the workload among the replicas. However, the challenge is how to keep the
replicas consistent.

In a full replication environment, every node replicates all the system’s data items
and there is the need for algorithms that ensure data coherence across all these nodes.

We now present some replication techniques inspired in the database and distributed
systems’ literature. We also present an overview of some memory consistency protocols,
the state of the art targeting full replication (that were already applied in the DSTM con-
text). Some of the techniques presented ahead do not have a direct application in the
DSTM context, but are presented for completion’s sake.

2.3.2.1 Primary-Backup Replication

In this algorithm, also known as passive replication [AD76; Bud+93], one replica is des-
ignated as the primary and all the others as backups (at any given time, there is only one
primary replica in the system). Clients make requests by sending messages only to the
primary replica. Then, the primary replica updates all the backup replicas. If the primary
replica fails, then a fail-over occurs and one of the backup replicas takes over.

The updates can happen in two ways: synchronously or asynchronously. In the first
case, the primary replica stays blocked until all backup replicas respond with an acknowl-
edge message, announcing that the update has been applied. In the second case, the up-
dates can be deferred until a time that is best suited for the system (e.g., less activity in
the system).

The main advantages of this technique are its simplicity, the fact that it involves less
redundant processing and is less costly than the techniques presented ahead. On the
other hand, requests can be lost when the primary replicas is overloaded with requests
(additional protocols must be employed to retry such lost requests).

This technique was extensively applied in the database context and in distributed
systems in general, but not in the DSTM context; since there is only one primary replica,
that replica will become the system’s bottleneck not allowing the system to scale.

2.3.2.2 State Machine Replication

This approach involves all the replicas in the processing of requests, thus having no cen-
tralized control. In this approach, also known as active replication [Sch90], client requests
are broadcasted to all replicas, which process the request and in the end send the response
back to the client. The client can wait for the first, a majority (voting) or all responses.

The main advantage of this technique is that it completely masks the effects of fail-
ures (by voting) to the client. On the other hand, it requires a communication primitive
that guarantees that all replicas receive requests in the same order (like some of the prim-
itives discussed in Section 2.3.1.2) and, so, the complexity is hidden by the communi-
cation primitive. Another disadvantage is the fact that this technique only works with
deterministic requests, i.e., given the same initial state and a request sequence, all replicas

19

2. RELATED WORK 2.3. Distributed Software Transactional Memory

will produce the same response sequence and end up in the same final state. Otherwise,
replicas can diverge and the system becomes inconsistent.

The AGGRO system [Pal+10] combines active replication with the OABcast commu-
nication primitive (Section 2.3.1.2) to build a DSTM system.

2.3.2.3 Certification-based Replication

Certification-based protocols in a full replication environment allow the localization of
transaction execution. A transaction executes locally in a single replica, only requiring
synchronization among all other replicas at commit time. In fact, read-only transaction
do not need remote synchronization at all. For write transactions the main idea is to defer
the updates (Section 2.2.2.3) of a transaction until the latter is ready to commit, and rely
on GCS primitives for communication.

Next we present some certification protocols. Some inspired in the database literature,
others designed specifically for the DSTM context.

Non-Voting Certification When a transaction T , executing at replica R, enters its com-
mit phase, it TO-broadcasts both its write and read sets [Agr+97]. Thus, enabling all other
replicas to independently validate, and abort or commit T , as they are in the possession
of all the necessary information, i.e., both the write and read sets. As the total order of the
deliveries is guaranteed (by the TOB primitive), all replicas will process all transactions
in the same order, making the outcome of any validation step the same on all replicas.
Figure 2.4a illustrates this protocol.

Voting Certification In non-voting certification protocols, to commit a transaction, both
write and read sets are disseminated in a single communication round. In common work-
loads the write set is typically much smaller than the read set. So, this protocol explores
the trade-off of exchanging potentially smaller messages (the read set, typically much
larger than the write set, is not disseminated) at the expense of requiring two commu-
nication rounds (instead of just one) [KA98]. When a transaction T , executing at replica
R, enters its commit phase, it only TO-broadcasts its write set. Thus, only R is capable
of validating T , as it is the only replica with both the write and read sets. If R detects a
conflict during the validation of T , it R-broadcasts an abort message notifying the other
replicas to discard T ’s write set and aborts T on R. Otherwise, a commit message is R-
broadcasted instead, activating the application of T ’s write set on all replicas, as shown in
Figure 2.4b. Both the abort and commit messages only need the reliable broadcast prim-
itive (which does not ensure total ordering, thus being cheaper) because T was already
serialized by the TO-broadcast of its write set.

Bloom Filter Certification Bloom filter certification (BFC) is an extension/variant of the
non-voting protocol that uses bloom filters to reduce the size of the broadcasted messages
[Cou+09], as the efficiency of the TOB primitive is known to be strongly affected by the

20

2. RELATED WORK 2.3. Distributed Software Transactional Memory

R1

R2

R3

start
commit
request

TO-Broadcast

validate
commit/abort

(a) Non-voting certification.

R1

R2

R3

start
commit
request validate

TO-Broadcast R-Broadcast

commit/abort

(b) Voting certification.

Figure 2.4: Certification-based protocols (taken from [Val12]).

size of the exchanged messages [Rom+08]. This protocol was devised with DSTM in
mind, and its first application was in the DSTM context. A bloom filter [Blo70; BM03] is
a space-efficient probabilistic data structure that is used to test if an element is a member
of a set. False positives are possible but false negatives are not, i.e., a query returning
true actually means “may be in the set”, and a query returning false means “definitely
not in the set”. Before transaction T TO-broadcasts its write and read sets, the read set
is encoded in a bloom filter whose size was computed to ensure that the probability of
a transaction abort due to a false positive (when querying the bloom filter) is less than a
user-tunable threshold.

Asynchronous Lease Certification Certification-based protocols are inherently optimis-
tic, since transactions are only validated at commit time and no bound is established
on the number of times that a transaction will have to be re-executed due to conflicts,
sometimes leading to undesirable high abort rates. This is obvious in workloads that
contain both short and long-running transactions, where the latter ones may be repeat-
edly and unfairly aborted due to conflicts with a stream of short-running transactions.
Asynchronous lease certification (ALC) tackles these problems using the notion of asyn-
chronous lease [Car+10]. A lease can be seen as a token that grants its owner privileges
over the management of a subset of a transaction’s dataset. Leases are asynchronous be-
cause they are detached from the notion of time, i.e., leases are granted in an acquire/re-
lease base. In order for a transaction T to commit, the replica R where T executed must
have established a lease for the accessed data items prior to proceed with its validation.
If T is found to have accessed outdated data, it is aborted and re-executed without re-
leasing the lease. This ensures that T will not be aborted again due to remote conflicts,
as no other replica can update the data items protected by the held lease, provided that
T deterministically accesses the same set of data items as the first execution.

Polymorphic Self-Optimizing Certification Non-voting protocols disseminate both the
transaction’s write and read sets, allowing each replica to locally certify transactions.
This is optimal in terms of communication steps. Voting protocols avoid broadcasting
the transaction’s read set, thus drastically reducing the size of the disseminated message.

21

2. RELATED WORK 2.3. Distributed Software Transactional Memory

On the other hand, this makes a second communication step necessary. Both protocols
incur in a trade-off between communication steps and message size, and thus they are
designed to ensure optimal performance in different workload scenarios (they can ex-
hibit up to 10x difference in terms of maximum throughput [Cou+11]). To deal with this
dichotomy polymorphic self-optimizing certification (PolyCert) supports the coexistence
of the voting and non-voting/BFC protocols simultaneously [Cou+11], in the DSTM con-
text, by relying on machine-learning techniques to determine, on a per transaction basis,
the optimal certification strategy to be adopted.

Speculative Certification With high probability, messages broadcasts in a local area
network are received totally ordered. The spontaneous total order property used by the
OABcast primitive is exploited in order to allow fast delivery of messages (Section 2.3.1.2).
Speculative certification (SCert) leverages on the OABcast’s optimistic delivery to overlap
computation with the communication needed to ensure the messages’ total order [Car+11b].
Once a transaction reaches its commit phase, it is first locally validated and then its write
and read sets are disseminated to all replicas by means of an OABcast. As soon as a trans-
action T is optimistically delivered, SCert speculatively certifies T instead of waiting for
its final delivery, as conventional certification protocols. If validation if successful, T is
said to be speculatively committed, i.e., the validation creates speculative versions of the
data items updated by T . Eventually T is finally committed if the final delivery matches
the optimistic (its speculative versions are actually written). If it does not match, T is
aborted unless it is still successfully certified in a new serialization order. Speculative
versions of data items are immediately visible to new transactions, hence tentatively se-
rializing the transactions after the speculatively committed ones. This allows an overlap
between computation and communication by certifying transactions while the OABcast
computes the final order and to detect conflicts earlier (e.g., as soon as a transaction T is
speculatively committed, any other local transaction that was serialized before T and that
has read, or reads, a data item updated by T is immediately aborted) avoiding wasted
computation and time on transactions doomed to abort.

2.3.3 Partial Replication Environment

Full replication forces the result of every transaction to be propagated to every replica in
the system. That may not scale with the increase of the number of replicas. It may also
become infeasible to have a full copy of the system’s data when that data grows, simply
because the replicas may not have enough space to store it. In fact, the system is limited
by the replica with less resources.

Partial replication refers to a replication approach in which replicas do not replicate
all the system’s dataset [Alo97]. Instead, each replica only stores a subset of the given
dataset and that subset can have copies in different replicas. The main idea of partial
replication is that not all replicas have to process a transaction. A transaction only has

22

2. RELATED WORK 2.3. Distributed Software Transactional Memory

to be sent to the set of replicas that replicate the data items it accesses. Thus, less mes-
sages are sent through the network and the coordination cost between replicas becomes
smaller [Cou+05]. Unlike full replication, partial replication can increase access locality
and reduce the number of messages exchanged between replicas [Cou+05]. Partial repli-
cation can be seen as a combination of the advantages of full replication and distribution
while trying to diminish their disadvantages.

2.3.3.1 Classification of Partial Replication Protocols

Partial replication protocols can be classified into three categories, according to what in-
formation about transactions replicas need to store [Sch+06; Sch+10]:

Non-genuine For every submitted transaction T , all replicas store information about T ,
even if they do not replicate data items read or written by T ;

Quasi-genuine For every submitted transaction T , correct replicas that do not replicate
data items read or written by T permanently store not more than the identifier of
T ; and

Genuine For every submitted transaction T , only replicas that replicate data items read
or written by T exchange messages to certify T .

Non-genuine protocols go against the main idea of partial replication, since every
replica has to be involved in the processing of every transaction, which leads to the com-
munication overhead problems of full replication.

2.3.3.2 Partial Replication in the DBMS Context

Partial replication in distributed systems, mainly databases, is a recent technique. In 1997,
Alonso [Alo97] addressed this problem and described under what conditions can partial
replication be supported using group communication primitives. In the following years,
several solutions were presented.

Sousa et al. [Sou+01] presented an approach based in the 2PC algorithm
(Section 2.3.1.1), named resilient atomic commit. Since replicas hold a partial copy of the
system’s dataset, they cannot decide to commit a transaction based only on the local val-
idation; they should also consider data items stored in other replicas and decide on a
common basis. In this approach, when a transaction enters its commit phase, it sends
its write and read sets to all replicas using the OABcast communication primitive (Sec-
tion 2.3.1.2). Similarly to 2PC, each replica does a local validation (involving every data
item accessed by the transaction for which that replica holds a copy) and then sends back
its vote. Every replica broadcasts its vote and starts gathering votes from the remainder
until it can reach a decision. Because of the OABcast primitive, if the final order of the
transaction is different from the tentative order the algorithm starts once again.

23

2. RELATED WORK 2.3. Distributed Software Transactional Memory

In 2006, Schiper et al. [Sch+06] followed a different approach. In this algorithm, the
transaction’s write and read sets are sent to all replicas using the RBcast primitive (Sec-
tion 2.3.1.2), not guaranteeing total order. It uses a consensus abstraction in order to agree
in a serializable order for the transactions. For each transaction decided in the consen-
sus, every replica (that has data items accessed by the transaction) sends its vote to the
remainder. If every replica receives positive votes the transaction is committed.

Most of the research carried out in this field resorted to the traditional consistency cri-
terion for replicated systems, 1-copy-serializability (1SR) [Ber+87], whereby a data item
must appear as one logical copy and the execution of concurrent transactions must be
coordinated so that it is equivalent to a serial execution over the logical copy.

In [Ser+07], Serrano et al. identified 1SR as a limitation when designing scalable repli-
cated solutions. Thus, they presented an algorithm with 1-copy-snapshot-isolation (1SI),
whereby replicas run under snapshot isolation (Section 2.2.1), as the consistency criterion.
Its main advantage is that there is no need to send the read set when certifying transac-
tions, reducing the size of the exchanged messages. Moreover, read-write conflicts are
not detected, reducing the abort rate. When a transaction T starts, it gets a start times-
tamp (T.ST) and when it enters its commit phase it gets a commit timestamp (T.CT),
and sends its write set (in total order) to all the other replicas. Every replica (that holds
data items accessed by the transaction) certifies the transaction if the following condition
is true:

@T ′ ∈ commitedTx : T ′.ST ≤ T.CT ≤ T ′.CT ∧ T.writeset ∩ T ′.writeset 6= ∅

P-store [Sch+10] is a genuine partial replication protocol for wide area networks. In
this protocol, replicas are divided into groups and data is partitioned between the groups
so as to ensure that, in the same group, all replicas replicate the same data items (data
items in different groups does not need to be disjoint). When a transaction enters its
commit phase it multicasts (Section 2.3.1.2) a message (with its write and read sets) to
every replica that holds a copy of data items accessed by the transaction. When the mes-
sage is received it is stored in a queue of transactions to be validated. If a transaction is
local, i.e., if the data items accessed by the transaction belong to only one group, each
replica can individually decide whether to commit or abort; otherwise, it is said that the
transaction is global and all the replicas (that hold a copy of data items accessed by the
transaction) exchange votes in order to decide the outcome of the transaction.

2.3.3.3 Partial Replication in the TM Context

As stated previously, partial replication is a recently explored technique. To the best
of our knowledge, until this moment there are no implementations of DSTM systems
exploiting partial replication, although some protocols have already been proposed.

In [Pel+12b], Peluso et al. present a genuine partial replication protocol for trans-
actional systems, named GMU. It uses a highly scalable, distributed multi-versioning

24

2. RELATED WORK 2.3. Distributed Software Transactional Memory

scheme. Moreover, read-only transactions never abort and do not need to undergo dis-
tributed validation. GMU ensures extended update serializability (EUS) [HP86] as its
consistency criterion. It is a particularly attractive criterion, since it is sufficiently strong
to ensure correctness for demanding applications, but also weak enough to allow effi-
cient and scalable implementations. EUS serializes all update transactions. However,
unlike 1SR, it allows concurrent read-only transactions to observe snapshots generated
from different linear extensions of the history of update transactions. To commit update
transactions, GMU uses a 2PC protocol (Section 2.3.1.1), involving only the replicas that
replicate data items accessed by the transaction (see Figure 2.5). Upon receiving a pre-
pare message, each replica acquires read and write locks on all data items read or written
by the transaction. Next, they validate the read set and send back to the coordinator the
vote message with the proposal of a new vector clock for the transaction. If all replies
are positive, the coordinator builds a commit vector clock and sends back the commit
message. This protocol blends into de 2PC messaging pattern a distributed consensus
scheme that resembles the one used by Skeen’s total order multicast algorithm [Déf+04].

Decision

R1

R2

R3

start
commit
request validate

Prepare Vote

decide commit/abort

Figure 2.5: Atomic commit protocol used in GMU.

With SCORe [Pel+12a], Peluso et al. go back to the 1SR consistency criterion. They
present a genuine partial replication protocol guaranteeing 1SR (at no additional over-
head). SCORe uses a multi-version concurrency control scheme, which is coupled with
a highly scalable distributed logical clock synchronization scheme that only requires the
exchange of a scalar clock value among the nodes involved in the validation of a transac-
tion. It never aborts read-only transactions and spares them from any distributed valida-
tion. SCORe relies on a genuine atomic protocol that can be seen as the fusion between
the 2PC and the Skeen’s total order multicast [Déf+04] (this protocol is quite similar to the
one used by GMU (Figure 2.5); the major difference is in the decide phase, where SCORe
guarantees that the commit events of all update transactions are totally ordered across all
the replicas of a same partition4). When a transaction enter its commit phase, the coordi-
nator sends a prepare message to all the involved replicas. Upon receiving the message,
each replica verifies whether the transaction can be serialized after every transaction that

4The authors abstract over the data placement policy by assuming that data is subdivided across m par-
titions and that each partition is replicated across r nodes.

25

2. RELATED WORK 2.3. Distributed Software Transactional Memory

has locally committed so far. To this end, it attempts to acquire exclusive and shared
locks, respectively for the data items in the transaction’s write and read sets, that it lo-
cally maintains. Next, it validates the transaction’s read set. If any of these operations fail,
the transaction will abort, as in classic 2PC. If the transaction passes the validation phase,
SCORe explores the vote message of 2PC to overlap a distributed agreement scheme, that
aims at establishing the final serialization order for the transaction.

2.3.4 Frameworks

With the advance of DSTM research some memory consistency protocols have been pro-
posed. Naturally, some frameworks have also been developed with the purpose of facil-
itating the development, testing and evaluation of such protocols. We now overview the
state of the art in DSTM frameworks.

2.3.4.1 DiSTM

In [Kot+08] Kotselidis et al. introduced a research platform for easy exploiting of STM
on clusters. The authors designed a framework for easy prototyping of TM coherence
protocols called DiSTM, which is built on top of DSTM2 [Her+06]. In this system, one
of the nodes acts as the master node where global data is centralized, while the rest of the
nodes act as worker nodes and maintain a cached copy of that global data (Figure 2.6).
Along with the system, three cache coherence protocols were proposed.

Master(Node

Global
Data

Global
Structures

Worker(Node(A

Cached
Data

Transactions

Execution(Engine

Worker(Node(B

Cached
Data

Transactions

Execution(Engine

a)

update
global(data((3)

update
cached(data((4)

Figure 2.6: DiSTM architecture (adapted from [Kot+08]).

Communication is based on the ProActive framework [Bad+06]. The main idea of
this framework is based on active objects [LS96], a standard object with its own thread of
execution. These objects can be distributed over the network and its activity and local-
ization (local or remote) are completely transparent. Asynchronous requests are sent to
an active object and are stored in its request queue before being served according to a
service policy.

As already stated, application-level objects are located in the master node and the
worker nodes maintain cached copies of the objects. Transactions are validated at com-
mit time and they update the global data stored in the master node upon successful

26

2. RELATED WORK 2.3. Distributed Software Transactional Memory

validation. Then, the master node eagerly updates all cached copies, and any running
transactions are aborted if they fail to validate against the incoming updates.

2.3.4.2 D2STM

In [Cou+09], Couceiro et al. leverage from replication to improve performance and also
to enhance dependability. Therefore data is replicated across all nodes (i.e., is fully repli-
cated) of the distributed system. Their contribution features a replica coordination proto-
col based in bloom filters that enables high compression rates on the messages exchanged
between nodes at the cost of a tunable increase in the probability of transactions abort due
to false positives.

Figure 2.7 shows the components which constitute a D2STM node. The framework
is based on the Java versioned software transactional memory (JVSTM) [CRS06], a STM
framework and communication is achieved through a GCS implementing a TOB primi-
tive.

Figure 2.7: Components of a D2STM replica (taken from [Cou+09]).

Between the communication and the STM layers lies the core component of this sys-
tem. The replication manager implements the distributed coordination protocol required
for ensuring replica consistency. It integrates with the STM layer, by having the ability to
inspect the internals of transactions execution, explicitly triggering transactions valida-
tion and atomically applying the write sets of remotely executed transactions.

2.3.4.3 GenRSTM

Like D2STM, GenRSTM [Car+11a] is a framework for fully replicated STM. From the
point of view of the components added to support the replicated setting it is very iden-
tical to D2STM, and it seems to be an enhanced version of the latter (Figure 2.8). Specifi-
cally, the STM layer can be exchanged as long as it provides an application programming

27

2. RELATED WORK 2.3. Distributed Software Transactional Memory

Communication Module

Application

Distributed STM API

STM

Replication Manager

Actuator API

Generic Group Communication Service

Network

Group Communication Toolkit

Reflective API

Figure 2.8: GenRSTM node architecture (taken from [Car+11a]).

interface (API) like the one of JVSTM, based on boxes.

In this system, the programmer explicitly marks which objects are replicated by hav-
ing their classes extend GenRSTMObject, a base class supplied by the framework. Trans-
actions also have to be explicitly programmed with the begin and commit operations.

2.3.4.4 HyFlow

HyFlow [SR11] is a framework for DSTM, with pluggable support for directory lookup
protocols, transactions’ validation protocols, contention management policies, cache co-
herence protocols, and network communication protocols.

Figure 2.9 shows the system’s architecture. It is composed by five main components:

Transaction Manager Encapsulates the local STM algorithm;

Instrumentation Engine Modifies classes code at load time, e.g., for modifying anno-
tated methods to support transactional behaviour;

Object Access Module Not only provides access to the objects owned by the current
node, but is also able to locate and send access requests to remote objects;

Transaction Validation Module Ensures data consistency, validating transactions upon
their completion. It encapsulates the contention management policy and the dis-
tributed commit protocol; and

Communication Manager Enables the network communication between the various nodes
of the system.

Objects can be distributed over the network, therefore normal references cannot be
used to access them. As such, this framework requires that any distributed class imple-
ments the IDistinguishable interface (which comprises the method getId() that

28

2. RELATED WORK 2.3. Distributed Software Transactional Memory

HyFlow/Runtime

Transaction/Manager

Object/Access/Module

Directory/Manager Object
Proxy

Communication/Manager

Migration
Module

Cached/Local
Objects/Pool

....Application
Level/Threads

Transaction/Validation
Module

Vot ing
Protocol

Contention
Manager

Java/Classes

Java
Virtual
Machine
IJVME

Instrumentation
Engine

Figure 2.9: HyFlow node architecture (taken from [SR11]).

returns an unique object identifier (UOID)). Now, where before fields held regular refer-
ences, they must maintain these UOIDs.

Distributed classes can provide remote methods which can be invoked regardless
of their objects’ location, like Java remote method invocation (RMI). These methods are
defined by the programmer annotating them with @Remote.

Since fields maintain UOIDs, in order to obtain a reference to a distributed object the
framework has a Locator instance from the directory manager component that encap-
sulates the directory lookup protocol. This component is used to retrieve objects given
their UOID. Transactions are defined as methods annotated with @Atomic.

2.3.4.5 TribuDSTM

TribuDSTM [Val12] is an efficient and modular DSTM framework for Java. Its main fea-
ture is its non-intrusive public API, only requiring the use of an @Atomic annotation in
the methods that should run as transactions. Everything else is hidden by the instrumen-
tation of the Java bytecode.

Figure 2.10 depicts TribuDSTM’s architecture. TribuDSTM uses TribuSTM [Dia+12;
Dia+13] for local concurrency control, and it implements other two components: a distri-
bution manager and a communication system. The distribution manager implements a
distributed/shared memory system, according to the desired distributed memory model,
as well as the protocols for distributed transactions validation. The communication sys-
tem encases the necessary communication primitives for the implementation of the dis-
tribution manager, providing an uniform interface, independently from the used GCS.

Due to its modularity, the framework allows various implementations of the different
components, allowing other distributed memory models.

From all the existing DSTM frameworks, TribuDSTM stands out as providing an ex-
tremely simple and intuitive public API, “hiding” the distribution with Java bytecode

29

2. RELATED WORK 2.4. Summary

Instrumentation
agent

Application

TribuSTM

Distributed
Transactions

Object
Serializer

Distribution
Metadata

DistributionwManager

CommunicationwSystem

.java

Network

Figure 2.10: TribuDSTM node architecture (taken from [Val12]).

instrumentation. All the other frameworks expose the distribution to the applications
requiring classes to extend some framework-provided class or to implement some inter-
face. TribuDSTM’s modularity is also advantageous since it allows us to easily extend
and implement the different components.

2.4 Summary

Initial work in the DSTM area was focused in clusters and in scalability requirements.
Manassiev et al. [Man+06] described a DSTM system targeting clusters of workstations,
built on a distributed shared memory system. In turn, Kotselidis et al. [Kot+08] investi-
gated a similar approach, but at the level of objects within a Java virtual machine (JVM)
(Section 2.3.4.1). Bocchino et al. [Boc+08] designed a DSTM for use across systems that
might scale to thousands of nodes, employing techniques to reduce communication be-
tween nodes.

More recent investigation has shifted to full replication and corresponding memory
consistency protocols. Couceiro et al. [Cou+09] present a fully replicated STM that uses a
certification-based protocol to enforce consistency (Section 2.3.4.2). Other works [Car+10;
Car+11b; Cou+11] proposed alternative memory consistency protocols, also in the scope
of full replication.

Some DSTM frameworks have also been designed, such as DiSTM [Kot+08], HyFlow
[SR11], D2STM [Cou+09], GenRSTM [Car+11a] and, more recently, TribuDSTM [Val12].

When it comes to partial replication, research is not so mature as in full replica-
tion. DSTM systems harnessing partial replication have yet not been developed, al-
though some applicable algorithms have been proposed. Both proposals, presented in
Section 2.3.3.3, are recent and were only applied to a transactional in-memory key/value

30

2. RELATED WORK 2.4. Summary

NoSQL data-store and data-grid (RedHat’s Infinispan5).
As seen in Section 2.3.2, certification-based protocols (targeting full replication) can

be easily implemented (Vale [Val12] implemented the non-voting certification protocol
in under 100 lines of code (LOC)). But protocols targeting partial data replication are
inherently more complex, and the complexity is even higher when we add genuineness
to protocols.

Section 2.3.3 presented the state of the art regarding partial data replication and it
is visible the variety of approaches followed. The various protocols make use of differ-
ent communication primitives trying to hide the protocols’ complexity. There are some
implementations of total order broadcast with good performance, but it removes the gen-
uineness from the protocols since messages are sent to all the system’s nodes. Total order
multicast enables genuine protocols, but the majority of the existing GCSs still does not
support it. Also, data partition across the system is a complex problem. One could see a
system with an oracle that knows the entire state of the system’s data and could decide
the best node where to execute a specific transaction. Or perhaps, a system that uses
some heuristic to partition data across the system and distributes the transactions ran-
domly among the nodes, or according some other heuristic respecting the data partition-
ing strategy. One could easily foresee many different approaches. Could a non-genuine
protocols have better performance than a genuine one? All the genuine protocols are vari-
ants of the 2PC protocol, but certification-based protocol are known for their simplicity.
Is it possible to implement a certification-like protocol targeting partial data replication,
simpler than the others proposed?

This chapter presented the foundations for our work. We started by familiarizing
the reader with the transactional model, the corresponding transaction concept and its
properties (Section 2.1). We then bridged from the databases into STM, bringing transac-
tions into memory, in Section 2.2. We covered its semantics, in Section 2.2.1, and possible
implementation alternatives that can be applied in order to achieve such semantics (Sec-
tion 2.2.2).

Entering the DSTM world, in Section 2.3, we introduced the issues that arise from ap-
plying STM into the distributed setting. We then, overview some popular support mech-
anisms that enable DSTM (Section 2.3.1). Next, we addressed full replication techniques,
in Section 2.3.2, some of them taken from the databases literature. Lastly, we presented
some of the proposals for partial replication (Section 2.3.3), where the majority comes
from the database world, with the exception of two proposals (Section 2.3.3.3) that have
been applied to a transactional in-memory distributed storage system, with promising
results. Thus, making partial replication a way for developing highly scalable systems.
We finished this section with an overview of the state of the art in DSTM frameworks.

5http://www.jboss.org/infinispan

31

http://www.jboss.org/infinispan

2. RELATED WORK 2.4. Summary

32

3
TribuDSTM

The software architecture developed in the scope of this thesis grows from previous
work, namely TribuSTM and its extension to distributed environments, TribuDSTM. As
such, we dedicate this chapter to the overviewing of both systems. We start, in Sec-
tion 3.1, by briefly introducing the Deuce Java STM framework and motivate the need for
TribuSTM. We also examine the metadata placement strategy as provided by Deuce, and
describe a new strategy featured in TribuSTM. In Section 3.2, we present the extensions
to TribuSTM in order to support DSTM. We first provide an overview of the architecture
and then detail, in more depth, its specific components. The content of this chapter is
heavily based in [Val12].

3.1 TribuSTM

Every STM algorithm associates some kind of information, which we call transactional
metadata, to each memory location (or object reference) accessed within a transaction.
This information is specific to each algorithm and may be constituted by, e.g., locks,
timestamps or lists of values. That metadata can be stored either in an external data
structure that associates it to the corresponding memory location (out-place or external
strategy), or alongside the memory location (in-place strategy).

The external strategy can be implemented using a hash table that matches the mem-
ory location to its metadata. For performance reasons the table is pre-allocated (avoiding
the overhead of dynamic memory allocation) and cannot be resized (which is known to
be a very heavy operation). Moreover, a very fast hashing function is used and there is
no collision resolution. This configuration imposes a big limitation: two or more mem-
ory locations can be paired with the same metadata. This option is valid for algorithms

33

3. TRIBUDSTM 3.1. TribuSTM

whose metadata does not have a strong bond with the associated memory locations, e.g.,
TL2 [Dic+06] whose metadata are locks, since it results in transactions conflicting in prac-
tice even though they actually should not, incurring in a performance penalty. However,
when metadata depend on the associated memory locations, e.g., the list of values asso-
ciated with each memory location in a multi-version algorithm like JVSTM, the external
strategy is not enough since it would be unacceptable for two memory locations to share
the same list of values.

We can conclude that using the external strategy is acceptable when metadata is not
strongly tied to its memory location, i.e., the relationship between a location and meta-
data can be N to one. If it is necessary to have a one to one relationship, then the external
strategy is inadequate and the in-place strategy is required.

The in-place strategy, in object-oriented programming, is typically implemented with
a variation of the decorator design pattern [Gam+94] by wrapping the targeted object in-
side a container object which holds the original object and its associated metadata. This
approach allows a very direct and efficient access to the metadata, but it is highly intru-
sive to the application code, which has to be rewritten in order to use the decorator’s class
in every object that has to be associated with metadata. Moreover, it does not efficiently
handle primitive types and arrays. Primitive types have to be replaced by their object
counterparts1. Arrays are a very strict structure to which we cannot add metadata, being
the naive solution to use an array of decorator objects (having an array of objects when
we could have an array of a primitive type).

3.1.1 Deuce

Deuce [Kor+10] is an efficient Java STM framework that can be added to existing appli-
cations without changing its compilation process or libraries.

In order to accomplish such non-intrusive behaviour, it relies heavily on Java byte-
code manipulation using ASM [OW213], a general-purpose Java bytecode manipulation
and analysis framework that can be used to modify existing classes or dynamically gen-
erate new ones. This instrumentation is performed dynamically as classes are loaded by
the JVM using a Java agent [Ora13].

To deal with performance-related issues, Deuce uses sun.misc.Unsafe [Sun13],
a collection of methods for performing low-level unsafe operations. Using sun.misc.

Unsafe allows Deuce to directly read and write to specific memory locations. Deuce also
allows to plug in custom STM implementations using the external strategy for metadata
placement.

The only modification required in the application code is the @Atomic annotation in
the methods that have to run as transactions, as all the transformations are performed
behind the scene dynamically at class loading. Therefore, programming an application
to be used with Deuce is no different from regular Java programming (Figure 3.1), and

1At least, in Java.

34

3. TRIBUDSTM 3.1. TribuSTM

invoking a transaction is simply to call a method, as seen in Figure 3.1c, provided that
the programmer annotates the method with @Atomic (Figure 3.1b).

class Node {
int value;
Node next;

int getValue() {
return value;

}
void setValue(int v) {

value = v;
}
Node getNext() {
return next;

}
void setNext(Node n) {

next = n;
}

}

(a) Node class.

class List {
Node root = new Node();

@Atomic
boolean insert(int v) {
Node newNode = new Node();
newNode.setValue(v);
newNode.setNext(root.getNext());
root.setNext(newNode);

}
}

(b) insert transaction.

List list = ...;
int v = ...;
list.insert(v);

(c) Invoking insert.

Figure 3.1: Deuce’s programming model (taken from [Val12]).

3.1.2 External Strategy in Deuce

For every STM algorithm, Deuce provides an unique identifier for an object field, a
pair 〈O, fo〉, where O is the object reference and fo is the logical offset of field f within O.
In the framework, since this pair uniquely identifies a field of an object, it can be used
as a key to associate object fields with transactional metadata in any map implemen-
tation, and for reading and writing directly to the associated memory location using
sun.misc.Unsafe.

Custom STM algorithms have to implement a Context interface, providing methods
for transactional read and write operations, and also for transactions’ start and commit.
The transactional access methods ({read,write}Tx) use the pair 〈O, fo〉, passed by
parameter, to retrieve the associated metadata from an external mapping table.

35

3. TRIBUDSTM 3.1. TribuSTM

1 class C {
2 int[] f1;
3

4 String f2;
5

6

7

8

9

10

11

12 C() {
13 f1 = new int[2];
14 ...
15 }
16 @Atomic int m1() {
17 f2 = "a";
18 ...
19 }
20

21

22

23

24 int[] m2(int i) {
25 f1[i] = f1[i] + 1;
26 ...
27 }
28

29

30

31

32

33 }

(a) Before.

1class C {
2int[] f1;
3static final long f1_o;
4String f2;
5static final long f2_o;
6

7static {
8f1_o = ...;
9f2_o = ...;
10}
11

12C() {
13f1 = new int[2];
14...
15}
16int m1() {
17// retry loop
18

19}
20int m1(Context ctx) {
21ctx.writeTx(this, f2_o, "a");
22...
23}
24void m2(int i) {
25f1[i] = f1[i] + 1;
26...
27}
28int[] m2(int i, Context ctx) {
29int aux = ctx.readTx(f1, i);
30ctx.writeTx(f1, i, aux + 1);
31...
32}
33}

(b) After.

Figure 3.2: Example of the modifications made for the external strategy (taken
from [Val12]).

To sum up, the Deuce framework performs the following instrumentation of the Java
bytecode. Let C = {f1, . . . , fi,m1, . . . ,mj} be a class C containing fields {fx : 1 ≤ x ≤ i}
and methods {my : 1 ≤ y ≤ j}. The instrumentation adds a new field fo

x for each
field fx. The new field’s value is the logical offset of fx in the class. For each method my,
it adds a modified version mt

y, in which read and write operations are replaced by the
corresponding transactional access methods through the runtime. Additionally, if my is
annotated with @Atomic, its body is replaced by a retry loop that calls mt

y in the context
of a transaction. In the end we have

C = {f1, fo
1 , . . . , fi, f

o
i , . . . ,m1,m

t
1, . . . ,mj ,m

t
j}

Figure 3.2 provides an example of the modifications made by the framework (the modifi-
cations are highlighted). It shows the corresponding fo field (Lines 3 and 5, Figure 3.2b)
for each field in the original class (Lines 2 and 4, Figure 3.2a). For each method in the

36

3. TRIBUDSTM 3.1. TribuSTM

original class (Lines 16 and 24, Figure 3.2a), we can see the corresponding mt version on
Lines 20 and 28, Figure 3.2b. As m1 is annotated with @Atomic (Line 16, Figure 3.2a) the
code in its body was replaced with the transactional retry loop (Line 17, Figure 3.2b).

3.1.3 In-Place Strategy in TribuSTM

TribuSTM is a extension to Deuce that enables STM algorithms to be implemented with
the in-place strategy without changing the API provided to application programmers.
In this framework both the external and in-place strategies are supported, making this
extension flexible and fully backwards compatible with already existing implementations
of STM algorithms.

When using the external strategy, the runtime provides the STM algorithms with the
pair 〈O, fo〉 for every transactional access to a field f and then, inside the algorithm, the
programmer has to obtain the corresponding metadata, fm, from the external mapping
table. In the in-place strategy, there is no table from which to obtain the metadata given
the pair 〈O, fo〉. Hence, the runtime provides the STM algorithms with fm itself. To man-
age this, the instrumentation injects fm in C, to be used instead of the pair 〈O, fo〉. STM
algorithms that follow the in-place strategy have to implement a somewhat different API
regarding the transactional access methods. When, the algorithms following the external
strategy implement the Context interface (whose transactional access methods receive
the pair 〈O, fo〉 as parameter), the algorithms following the in-place strategy implement
the ContextMetadata interface in which transactional access methods receive fm as
parameter.

Algorithms that adopt the in-place strategy have to follow some rules regarding their
metadata. Their transactional metadata class must extend a common super class, TxMeta-
data, that holds the corresponding pair 〈O, fo〉 to read and write the associated field, and
the algorithm’s implementation must also specify its metadata classes through a @In-

PlaceMetadata annotation, used by the instrumentation process to be aware of which
metadata class to inject.

Figure 3.32 shows the differences between the interfaces that the STM algorithms have
to implement when following the external or the in-place strategies. In Figure 3.3b, show-
ing the in-place strategy interface, the {read,write}Tx methods receive the metadata
as a parameter, while in Figure 3.3a, the same methods for the external strategy take
the pair 〈O, fo〉 and require an additional step to fetch the metadata from the external
mapping table. Figure 3.3b also shows us that the instrumentation process is aware that
it needs to inject fm fields of type MyMetadata, as specified by the @InPlaceMetadata

annotation.

2In this example we use T where there should be a version of each method for every Java primitive data
type int, long, float, double, short, char, byte, boolean and Object.

37

3. TRIBUDSTM 3.1. TribuSTM

class MyContext implements Context {
void writeTx(Object obj, long f_o, T val) {
// obtain the metadata from the table
// do whatever...

}
T readTx(Object obj, long f_o) {
// obtain the metadata from the table
// do whatever...

}
}

(a) External metadata interface.

@InPlaceMetadata(class=MyMetadata)
class MyContext implements ContextMetadata {
void writeTx(TxMetadata f_m, T val) {
// do whatever...

}
T readTx(TxMetadata f_m) {

// do whatever...
}

}

(b) In-place metadata interface.

Figure 3.3: Algorithm implemented with both interfaces (taken from [Val12]).

To sum up, the TribuSTM framework performs the following instrumentation of the
Java bytecode. Let C = {f1, . . . , fi,m1, . . . ,mj} be a class C containing fields {fx : 1 ≤
x ≤ i} and methods {my : 1 ≤ y ≤ j}. The instrumentation adds a new field fm

x for
each field fx (besides fo

x). The new field references the transactional metadata object
associated with fx. The methods suffer the same transformations as with the external
strategy (Section 3.1.2), with the exception of the constructors and the static initializers,
where the creation and initialization of the fm

x metadata fields’ objects are injected. The
transactional versions mt

y are adapted to call the transactional access methods using fm
x

instead of the pair 〈O, fo
x〉. In the end we have

C = {f1, fo
1 , f

m
1 , . . . , fi, f

o
i , f

m
i , . . . ,m1,m

t
1, . . . ,mj ,m

t
j}

Figure 3.4 provides an example of the modifications made by the framework (using
the same example as in Figure 3.2). Besides the fo fields, we can see the additional fm

fields (Lines 4 and 7, Figure 3.2b) and their initialization (Lines 23 and 24, Figure 3.2b).
In Figure 3.2b, Line 31, for example, the writeTx method is called taking the meta-
data object as a parameter. Lines 2, 15-21, 34-35 and 38-40 (Figure 3.2b) have modifi-
cations regarding arrays. For more detailed information about the transformations of
arrays-related code done by the framework we direct the reader to [Val12] and [Dia+12;
Dia+13].

38

3. TRIBUDSTM 3.2. Putting the D in TribuDSTM

1 class C {
2 int[] f1;
3

4

5 String f2;
6

7

8

9

10

11

12

13

14 C() {
15 f1 = new int[2];
16

17

18

19

20

21

22 ...
23

24

25 }
26 @Atomic int m1() {
27 f2 = "a";
28 ...
29 }
30

31

32

33

34 int[] m2(int i) {
35 f1[i] = f1[i] + 1;
36 ...
37 }
38

39

40

41

42

43 }

(a) Before.

1class C {
2ArrayInt f1;
3static final long f1_o;
4MyMetadata f1_m;
5String f2;
6static final long f2_o;
7MyMetadata f2_m;
8

9static {
10f1_o = ...;
11f2_o = ...;
12}
13

14C() {
15f1 = new ArrayInt();
16f1.a = new int[2];
17f1.a_m = new MyMetadata[2];
18for (int i = 0; i < 2; i++) {
19f1.a_m[i] =
20new MyMetadata(f1.a, i);
21}
22...
23f1_m = new MyMetadata(this, f1_o);
24f2_m = new MyMetadata(this, f2_o);
25}
26int m1() {
27// retry loop
28

29}
30int m1(Context ctx) {
31ctx.writeTx(f2_m, "a");
32...
33}
34ArrayInt m2(int i) {
35f1.a[i] = f1.a[i] + 1;
36...
37}
38ArrayInt m2(int i, Context ctx) {
39int aux = ctx.readTx(f1.a_m[i]);
40ctx.writeTx(f1.a_m[i], aux + 1);
41...
42}
43}

(b) After.

Figure 3.4: Example of the modifications made for the in-place strategy (taken
from [Val12]).

3.2 Putting the D in TribuDSTM

Usually, DSTM infrastructures are built by extending existing STM frameworks. This is
the case with TribuDSTM. TribuSTM was extended with support for distributed objects,
means to access them transparently and, validating and committing transactions access-
ing these objects.

TribuDSTM’s architecture (Figure 3.5) is comprised by two main components: (1) the

39

3. TRIBUDSTM 3.2. Putting the D in TribuDSTM

local concurrency control; and (2) the distributed commit and memory consistency layer.
Local concurrency control is taken care of by TribuSTM (Section 3.1), that supports dif-
ferent algorithms transparently from the application’s perspective. To bring TribuSTM to
the distributed setting, the framework stack was extended with a distributed commit and
memory consistency layer, the distribution manager (DM). It is responsible for establish-
ing the distributed (possibly shared) memory through mechanisms for object distribution
and transaction execution on the distributed memory.

TribuDSTM was designed to be an efficient and modular framework, hence it allows
different realizations of the two main components. The local concurrency control allows
for modularity since it supports different STM algorithms, but the framework is tied to
TribuSTM.

Instrumentation
agent

Application

TribuSTM

Distributed
Transactions

Object
Serializer

Distribution
Metadata

DistributionwManager

CommunicationwSystem

.java

Network

Figure 3.5: TribuDSTM architecture overview (taken from [Val12]).

The interface between the application and TribuSTM remains unchanged, as methods
are defined as transactions with the @Atomic annotation, and the instrumentation process
redirects read and write accesses to TribuSTM.

To support distributed transactions, the DM should be aware of some events triggered
by the application on TribuSTM (e.g., transactional accesses or commit requests). The
DM might also need to query or modify the state of the local STM (e.g., to apply updates
made by a remote transaction). Distributed objects are achieved with a combination of
distribution metadata and the Java serialization support.

As aforementioned, STM algorithms associate metadata to each object’s field to man-
age concurrency. The support for distributed objects also associates metadata with each
object to implement a certain distributed memory model. These are two distinct kinds
of metadata, thus we will refer to both as transactional and distribution metadata, respec-
tively, to disambiguate if necessary.

40

3. TRIBUDSTM 3.2. Putting the D in TribuDSTM

3.2.1 Distributed Transactions

Depending on the used distributed memory model, transaction operations may not be
strictly local. A transactional read or write operation (or any other operation) might
require communication between the system’s participants. In a full replication scenario
using a certification-based protocol (Section 2.3.2.3), replicas execute transactions locally
and only require synchronization when a transaction attempts to commit. But in a non-
replicated scenario, transactional read and write accesses might trigger a request to the
owner of the read/written memory location, if such location is not local.

In order to be able to react to certain events from TribuSTM, the DM makes use of
the interface presented in Table 3.1, the reflexive API (using the observer design pat-
tern [Gam+94]). The DM registers callbacks for transaction-related events such as trans-
action start (ONSTART), transactional accesses (ONREAD, ONWRITE), and commit and
abort (ONCOMMIT, ONABORT).

Table 3.1: Operations provided by the reflexive API (taken from [Val12]).

Operation Description

ONSTART(T) Notifies of the start of transaction T .
ONREAD(T , m) Notifies of the read on transactional metadata m by

transaction T .
ONWRITE(T , m, v) Notifies of the write of value v on transactional metadata

m by transaction T .
ONCOMMIT(T) Notifies of the commit request issued from transaction T .
ONABORT(T) Notifies of the abort of transaction T .

The DM also needs to retrieve information from the state of the STM, or even to mod-
ify it. In a full replication scenario, when the DM initiates the certification protocol it
must have (at least) the read and write sets of the transaction, and it updates the STM
according to the latter if the validation was successful.

In order to query and/or alter the state of the local STM, the DM makes use of the
interface presented in Table 3.2, the actuator API. This interface allows the DM to inspect
the state of the local STM and act upon it. The DM can acquire an opaque representa-
tion of a transaction’s state (CREATESTATE) which can be used to recreate the transaction
(RECREATETX). It can also explicitly trigger the validation (VALIDATE) and apply the
updates (APPLYWS) of a transaction. When the DM reaction to an event triggers com-
munication with remote nodes, it might need to wait for a response, thus blocking the
execution. Execution resumes after the response is received, from which it is notified via
callback ({START, READ, WRITE, COMMIT, ABORT}PROCESSED).

3.2.2 Distributed Objects

As stated, TribuDSTM achieves distributed objects combining some kind of distribution
metadata with the memory locations. In a full replication scenario, we want to logically

41

3. TRIBUDSTM 3.2. Putting the D in TribuDSTM

Table 3.2: Operations provided by the actuator API (taken from [Val12]).

Operation Description

CREATESTATE(T) : S Returns a representation of transaction’s T state, com-
posed by its read set RS, write set WS, local identifier id,
in addition to other opaque STM algorithm-dependent
relevant information.

RECREATETX(S) : T Returns a transaction T recreated from state S.
VALIDATE(T) : bool Validates transaction T returning true or false if success-

ful or not, respectively.
APPLYWS(T) Applies all updates by transaction T on the local STM.
STARTPROCESSED(T) Notifies that the start of transaction T has been pro-

cessed.
READPROCESSED(T , v, a) Notifies that the read from transaction T has been pro-

cessed, yielding value v. If a is true a conflict as been
detected, hence T must abort.

WRITEPROCESSED(T , a) Notifies that the write from transaction T has been pro-
cessed. If a is true a conflict as been detected, hence T
must abort.

ABORTPROCESSED(T) Notifies that the abort request from transaction T has
been processed.

COMMITPROCESSED(T , c) Notifies that the commit request from transaction T has
been processed with outcome c, true or false if success-
fully committed or not, respectively.

identify a memory location across the whole system. If the metadata associated with
each memory location includes an unique identifier, a memory location with the same
identifier on different replicas represents the same global location. On the other hand, in
a fully distributed scenario, metadata might be composed of all the necessary information
to execute a remote procedure call (RPC) to the owner of the location. Nevertheless, an
unique identifier is always necessary since there has to be a way to distinguish every
object.

3.2.2.1 Metadata

The necessary information to be included in the metadata depends on the employed
distributed memory model, so the only requirement is that the used metadata class must
implement the DistMetadata interface.

To associate metadata with objects and to have the means of retrieve it, the framework
defines a DistributedObject interface comprising a getter and a setter method for the
DistMetadata object (Table 3.3). Instead of requiring the application programmer to
explicitly declare that the application classes implement this interface, the framework’s
instrumentation agent automatically injects such code in the application.

Note that now, the transactional metadata (objects of type TxMetadata) also behave
as regular distributed objects. Hence, every transactional metadata class extends the

42

3. TRIBUDSTM 3.2. Putting the D in TribuDSTM

Table 3.3: Operations provided by the distributed object API (taken from [Val12]).

Operation Description

GETMETADATA(O) : M Returns the distribution metadata M associated with dis-
tributed object O.

SETMETADATA(O, M) Associates the distribution metadata M with distributed
object O.

REPLACEOBJECT(O) : D Delegates object D to be serialized instead of distributed
object O.

RESOLVEOBJECT(O) : D Delegates distributed object D to be de-serialized instead
of object O.

TxMetadata class, which in turn implements the DistributedObject interface (hav-
ing an associated distribution metadata).

3.2.2.2 Serialization

To finalize the support for distributed objects, the framework makes use of the Java seri-
alization API, more specifically the writeReplace and readResolve methods. These
methods allow the framework to control how objects are (de)serialized.

The key idea is that distributed objects are serialized in function of its distribution
metadata, hence different implementations of the DM might serialize objects differently
according to their distributed memory model. The flexibility to (de)serialize objects ac-
cording to the specific DM implementation is achieved by inserting hooks (REPLACEOBJECT

and RESOLVEOBJECT in Table 3.3) in the writeReplace and readResolve methods,
respectively, delegating the process to the DM.

To sum up, the following instrumentation of the Java bytecode is performed by the
framework to support distributed objects. Let CI = {f,m} be a class C implementing the
set of interfaces I , and consisting of fields f and methods m. The instrumentation process
makes C implement DistributedObject, and a new field fdm of type DistMetadata
is added, along with its getter and setter methods, getMetadata and setMetadata. To
conclude, the methods writeReplace and readResolve are also added to C. In the end we
have

CI ∪ DistributedObject =

{
f, fdm,m,

getMetadata, setMetadata, writeReplace, readResolve

}

3.2.3 Communication System

Different implementations of the DM can have specific requirements for the commu-
nication system (CS). For instance, the non-voting certification protocol (Section 2.3.2.3),
running on a fully replicated memory, requires a GCS with support for a TO-broadcast

43

3. TRIBUDSTM 3.2. Putting the D in TribuDSTM

primitive. On the other hand, in a purely distributed memory (i.e., every object has one
and only one owner) with a pessimistic approach, i.e., lock objects upon access, is only
required point-to-point communication.

The framework also provides a clean API between the distributed transactions (DT)
component and the CS (Figure 3.5), being easy to plug in different GCSs. Those interfaces
are presented in Tables 3.4 and 3.5. The latter one presents to what deliveries the DT can
subscribe in order to be notified of incoming messages.

Table 3.4: Interface provided by the GCS to the DT (taken from [Val12]).

Operation Description

TOBCAST(m) TO-broadcasts message m.
RBCAST(m) R-broadcasts message m.
SELF(s) : bool Returns true if sender s is the local replica, false otherwise.

Table 3.5: Interface provided by the DT to the GCS (taken from [Val12]).

Operation Description

ONTODELIVER(m, s) Notifies of the delivery of message m which has been TO-
broadcasted by sender s.

ONRDELIVER(m, s) Notifies of the delivery of message m which has been R-
broadcasted by sender s.

3.2.4 Bootstrapping

The execution model in a distributed environment can execute the same program at all
replicas or execute possibly different programs at each replica, being that all of these pro-
grams manipulate (some of) the same objects. The only way to distinguish two objects
is for both to have some differentiating characteristic. The most straight-forward way of
achieving this is for each object to have an unique identifier associated with its distribu-
tion metadata (as stated in Section 3.2.2). But those identifiers are assigned randomly. If
every object is assigned a different identifier, the managed objects are disjoint. This poses
a bootstrap problem.

Consider, for example, the Red-Black Tree microbenchmark. This microbenchmark
manipulates a red-black tree, doing three different operations on the tree: (1) insertions;
(2) removals; and (3) searches. When the microbenchmark is distributedly executed at
each replica, it must handle the same tree in every replica. This means that the tree
reference distribution metadata has to have the same identifier in all replicas.

This problem is addressed by TribuDSTM using the @Bootstrap annotation. It is used
to denote that a number of fields are semantically the same, hence their value is always
the same (as the distribution metadata identifier).

44

3. TRIBUDSTM 3.3. Summary

This annotation targets classes’ fields and it takes a parameter id whose value serves
as a seed in the identifier generation. Using the same seed deterministically generates
the same identifier. This gives the practical effect of that field being already replicated
a priori with the same identifier in all replicas, thus keeping the field’s value consistent
across the system when updated (in a transactional context).

Figure 3.6 shows an example using the annotation. The tree field is semantically the
same in all replicas and it is initialized in the createTree transaction. In all replicas, the
tree field metadata’s identifier is generated using the value given as parameter, hence
the identifier is the same in every replica.

class Benchmark {
@Bootstrap(id = 1)
private static RBTree tree;

@Atomic
public void createTree() {

if (tree == null)
tree = new RBTree();

}

public static void main(String[] args) {
...
createTree();
// from this point on, tree references the same object in every replica
...

}
}

Figure 3.6: Bootstrapping with the @Bootstrap annotation (taken from [Val12]).

3.3 Summary

We presented TribuSTM, an extension to the Deuce Java STM framework. Deuce only
supports the implementation of STM algorithms following the external placement strat-
egy for transactional metadata. TribuSTM extends Deuce by supporting also the in-place
metadata placement strategy without any changes to the API the framework provides to
the applications.

We also described how TribuSTM was extended to support DSTM. In Section 3.2, we
presented the framework’s architecture, its layers and the defined APIs between them.
We also detailed how the local STM layer was extended to support distributed transac-
tions and distributed objects.

45

3. TRIBUDSTM 3.3. Summary

46

4
Supporting Partial Replication with

TribuDSTM

In this chapter we present the extensions done to TribuDSTM (Chapter 3) in order to
support the partial data replication distributed memory model. In Section 4.2, we de-
scribe the extensions added to the programming model of TribuDSTM. We provide an
overview of the extended framework and detail the main modifications in Section 4.3. In
Section 4.4, we also describe our implementation of a partially replicated STM using the
proposed framework.

4.1 Partial Replication Summarized

This section summarizes the concept of partial data replication introduced in Section 2.3.3.

Data distribution maximizes the system’s total storage capacity, but provides no fault
tolerance support. The failure of one or more nodes means inevitable data loss. On the
other end of the spectrum, full data replication maximizes the possibility of data survival
while limiting the system’s total storage capacity to the capacity of the node with fewer
resources.

In this thesis we consider an intermediate solution – partial data replication [Alo97]
– where each node only replicates a subset of the system’s data. This strategy tries to
combine the advantages of both data distribution and full replication while diminishing
their disadvantages, thereby allowing the system to make good use of its storage capacity
while ensuring some level of fault tolerance.

47

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.2. Programming Model

The key idea is that, in a system with these characteristics, the processing of a trans-
action only involves a subset of the system’s nodes. Given that, since different trans-
actions may access different data items located at distinct nodes, their processing will
likely involve different sets of nodes, allowing the latter to process independent parts of
the workload in parallel. This approach can improve the scalability of replicated systems
since updates only need to be applied to a subset of the system’s nodes. This leads to a
eventually smaller synchronization cost [Cou+05].

The use of this strategy implies the division of the system nodes into groups and the
replication of the data among these groups as to ensure that, in the same group, every
node replicate the same data items. However, this does not forbid the replication of the
same data item in multiple groups nor requires that groups have to be comprised by
disjoint sets of nodes.

4.2 Programming Model

Partial replication as a concept originates from the database system’s research field [Alo97]
where it has been used in the context of large scale systems. Given so, it is natural that
they represent a source of inspiration when trying to incorporate this concept in a DSTM
system for a general-purpose programming language. However, these contexts have
distinct properties. When partial replication is applied to databases, the content of the
tables stored in the database is simply partitioned by rows and spread among the sys-
tem’s nodes. More or less the same happens with partial replicated key/value stores.
But the concept of partial replication, such as it is used by these, needs to be adapted to
this new context of a general-purpose programming language. What data items should
be partially replicated? Can any object be partially replicated? These and other issues
will be addressed next.

In the JVM, the memory heap can be seen a directed graph, where each node represents
an object which, in turn, may have references to other objects, as Figure 4.1 depicts. The
graph’s leaf nodes represent primitive data types and the remainder represent references
to other objects or primitive data types. In Figure 4.1, node B can be seen as an object
comprising three fields, where two are primitive data types and the other (node E) is a
reference to another object which, in turn, has two fields (also two primitive data types).
Nodes A and H are referencing the same object (aliasing).

Following the spirit of TribuDSTM [Val12], we decided to keep our framework’s pub-
lic API as less intrusive as possible for programmers. Hence, we added just one new
annotation, @Partial. Figure 4.2 illustrates the usage of this annotation for a simple ex-
ample of a linked list. By adding the @Partial annotation to the field of a class, the pro-
grammer is declaring that everything that is downstream of this reference (in the object
graph) should be replicated in a single group, i.e., it should be partially replicated. By

48

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.2. Programming Model

A

B

DC E

F G

H

Figure 4.1: Example of a Java heap graph.

default, everything that is not explicitly annotated will be fully replicated. So, we pro-
vide a flexible programming model which allows the programmer to adjust the level of
distribution/replication to the specificities of each application.

class Node<T> {
private Node next;
@Partial
private T value;
...

}

(a) Class Node.

class List<T> {
protected Node<T> head;
public List() {

this.head = new Node<T>(null, null);
}
...

}

(b) Classe List.

Figure 4.2: Example using the @Partial annotation.

However, the use of this annotation requires some caution. Given that data is partially
replicated, data access is not uniform, as some may require communication with a remote
node. This is the inevitable cost of distribution. In the example of Figure 4.2, if the
@Partial was placed in the next variable, the iteration over the elements of the list would
entail a, possibly remote, read operation for each iterated element, even if we do not
inspect its value. This would seriously compromise the application’s performance.

The usage of the @Partial annotation is somewhat inspired in distributed databases
with partial data replication. In these, data is stored in tables and those tables exist in
every node. The only thing that is partially replicated is the information stored in the
tables. The same happens with key-value data stores, where the structure/“container”
that organizes the data can also be found in every node, while the actual information is
partially replicated. In a general-purpose programming language, the idea is somewhat
the same: full replication of the data structures and partial replication of the hard data
they store. In Figure 4.2, the data structure is the linked list, with its fully replicated nodes
(Node class). The hard data is represented by the value variable that is partially repli-
cated. This way, the number of remote read operations resultant from the list’s traversal
is limited by which values we really want to inspect.

Still in the scope of the linked list example in Figure 4.2, consider a concrete distri-
bution of the data, such as the one depicted in Figure 4.3. We can see two groups. The

49

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.2. Programming Model

grey squares can be seen as the nodes of the linked list and the circles as the value stored
at each node. The grey circles denote replicated data items and the white ones denote
data items that are not replicated. We can observe that the structure of the linked list, i.e.,
the nodes, is fully replicated and the value in each node is partially replicated, since it is
replicated in only one group.

G1

G2

Figure 4.3: Example of a partially replicated linked list.

Following the usage explained above, typically the application of the distribution,
i.e., the application of the @Partial annotation, is made in terms of data structures. These,
usually, are implemented once, by someone who knows the system, and can later be used
transparently by the common user.

4.2.1 Limitations

One limitation of this model is the prohibition of the creation of edges in the heap graph
which, in turn, create cycles for nodes upstream of the @Partial annotation. In the ex-
ample of Figure 4.1, if the field represented by node E was annotated with @Partial, the
dashed edge could not exist. By annotating node E, the programmer declared that the
objects represented by nodes E, F and G will be partially replicated and that, in contrast,
everything that is upstream of node E will be fully replicated. Existing an edge from
node G to node B intuitively means that node B should be partial and fully replicated
at the same time. On the other hand, if the @Partial annotation was placed in node B,
the dashed line could exist, since everything that is downstream of the annotated node
would be partially replicated without any problem. This is not a severe limitation.

We verify the violation of this restriction at runtime. The system will throw an excep-
tion if the application tries to write an object that is replicated in a group to a memory
location associated with a transactional metadata that is replicated in a different group.
We will revisit this limitation and explain it in a section ahead, in the light of more de-
tailed information. We will refer to this as the checkGroup restriction.

50

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.3. Runtime System Extensions to TribuDSTM

4.3 Runtime System Extensions to TribuDSTM

In Chapter 3, we presented TribuDSTM’s architecture and detailed its various compo-
nents. This section details the extensions performed upon the TribuDSTM framework to
support partial replication. Their scope is twofold, targeting both API design and im-
plementation, with a focus essentially directed at the communication layer, and at group
and data partitioning.

4.3.1 Communication System

The management of the distributed (possibly shared) memory in TribuDSTM is concen-
trated on the DM component. Different management strategies, i.e., different DM imple-
mentations, may impose different requirements on the lower layers of the software stack,
namely the one responsible for the communication primitives. While, in a full replication
environment, the majority of the protocols require TO-broadcast and R-broadcast

primitives, in a partial replication scenario, protocols usually need point-to-point com-
munication, or even an A-multicast primitive.

To this extent, we extended the APIs presented in Section 3.2.3 (Tables 3.4 and 3.5) to
accommodate the new communication primitives usually required by partial replication
protocols.

We have added a total of three primitives, as seen in the lower half of Table 4.1. The
multicast primitives (AMCAST and RMCAST) send the message passed as a parameter to
a group g. This group is conceptually defined by the nodes to which the message should
be sent. Parameter g is an opaque representation of a group that conceptually includes
the location of the nodes that comprise it. This allows the framework to handle different
GCSs transparently. The specific representation of a group used by the framework will
be presented in a section ahead.

Table 4.1: Extended interface provided by the GCS to the DT.

Operation Description

TOBCAST(m) TO-broadcasts message m.
RBCAST(m) R-broadcasts message m.
SELF(s) : bool Returns true if sender s is the local replica, false otherwise.

AMCAST(m, g) A-multicasts message m to group g.
RUCAST(m, dst) Reliably unicasts message m to node dst.
RMCAST(m, g) Reliably multicasts message m to group g.

Table 4.2 presents to what deliveries the DT can subscribe, to be notified of incoming
messages. We extended the API with the last three operations that allow the DT to be
notified of incoming messages sent with the primitives added to the previous table.

It should be noted that from the three GCS implementations considered by Vale [Val12]
(JGroups [Ban98], Appia [Mir+01] and Spread [Ami+00]) the only one providing an atomic

51

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.3. Runtime System Extensions to TribuDSTM

Table 4.2: Extended interface provided by the DT to the GCS.

Operation Description

ONTODELIVER(m, s) Notifies of the delivery of message m which has been TO-
broadcasted by sender s.

ONRDELIVER(m, s) Notifies of the delivery of message m which has been R-
broadcasted by sender s.

ONAMDELIVER(m, s) Notifies of the delivery of message m which has been A-
multicasted by sender s.

ONRUDELIVER(m, s) Notifies of the delivery of message m which has been re-
liably unicasted by sender s.

ONRMDELIVER(m, s) Notifies of the delivery of message m which has been re-
liably multicasted by sender s.

multicast primitive (as presented in Section 2.3.1.2) is JGroups. This primitive was imple-
mented in [Rui11].

4.3.2 Groups

It has been stated multiple times that partial replication requires the grouping of the
system’s nodes. These groups determine the replication factor for each data item. If
a group is comprised by four nodes, then the data items replicated by this group are
replicated in those four nodes and are said to have a replication factor of four.

TribuDSTM was compromised with the full replication model and hence did not fea-
tured the notion of group. Accordingly, such support has to be added. Table 4.3 presents
the implemented group interface, where g denotes a group identifier, a a node identifier
and A a list of node identifiers.

Our concrete implementation of a group used by the framework is implemented as
a set of addresses. So, when operation GETMEMBERS is invoked it returns a list with the
addresses of all the elements that belong to the specified group. The special group ALL

denotes the group that represents all the nodes in the system.

In our implementation, we opted for a simple scheme that replicates each data item
only in one group and groups are comprised by disjoint sets of nodes. Although we imple-
mented it this way, it can be easily extended. For a data item to be replicated by multiple
groups we just need to replace the association of a single group to the item by a list of
groups (in the distribution metadata). For a group to be comprised of non-disjoint sets
of nodes, we just need to add the same node address in multiple groups, thus making a
node belong to different groups (this is related with the group partitioning).

4.3.2.1 Static Partitioning vs. Dynamic Partitioning

We define static partitioning as being a partitioning process determined in advance and
feed to the system at deployment time. Usually this partitioning falls on the user which

52

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.3. Runtime System Extensions to TribuDSTM

Table 4.3: Operations provided by the group API.

Operation Description

GETMEMBERS(g) : A Returns a list A with the elements of group g.
CONTAINS(g, a) : bool Returns true if a is an element of group g, false otherwise.
ADD(g, a) Adds element a to group g.
REMOVE(g, a) Removes element a from group g.
SETGROUP(g, A) Sets group g to be comprised by elements A.
SIZE(g) : int Returns the number of elements in group g.
EQUALS(g, g′) : bool Returns true if group g is equal to group g′, false otherwise.
UNION(g, g′) : g′′ Returns a new group g′′ comprised by the union of group g

with group g′.
ISLOCAL(g) : bool Returns true if the local node is an element of group g, false

otherwise.
ISALL(g) : bool Returns true if group g is the group ALL, false otherwise.

must provide the specific grouping to the system (e.g., using some kind of configuration
file). On the other hand, we define dynamic partitioning as being a partitioning process
that is performed by the system using some implemented decision process.

Static partitioning greatly restricts extensibility, since it would be impossible to im-
plement a more complex/“smart” and automatic partition strategy. Moreover it burdens
the user with writing of a configuration file for every target system/cluster. So, we opted
for dynamic partitioning, requiring the implementation of partitioning strategies (and al-
lowing the user to choose from among the implemented strategies, by parametrization,
when executing the target program).

An example of what we classify as a smarter strategy is, for example, a strategy where
the partitioner measures the network latency between nodes and tries to create groups
with the lowest possible latencies (it just has to be a deterministic process).

Note that our decision does not prevent the use of static partitioning. For that pur-
pose, it is only necessary to establish the reading of the static information as the dynamic
decision process.

4.3.2.2 Our Approach to Dynamic Partitioning

The group division strategy may have a substantial impact on the overall system’s per-
formance. Consider, for instance, a system composed by multiple clusters. A group
comprising nodes of different clusters could increase the validation time of a transaction
in several orders of magnitude.

Given this impact, the assignment of nodes to the respective group has to follow some
logic/strategy. Following the modular design of the TribuDSTM framework, these deci-
sion strategies must be encapsulated in some component. To this end, we created a new
sub-component that is responsible for this decision, the group partitioner (GP). With the
knowledge of the nodes that exist in the system and the number of groups that should

53

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.3. Runtime System Extensions to TribuDSTM

exist, the GP clusters the nodes into groups according to the chosen strategy. Both the
replication factor and the partitioning strategy are parametrizable. Therefore, the user
can configure this component by supplying concrete values to these parameters. No
code rewriting is required whatsoever to switch between partitioning strategies.

Given that the decision of how many groups should be deployed falls of the user, if
he wants to know the number of groups created by the system, the following calculation
can be done:

Number of groups =
Number of nodes
Replication factor

For example, if we have a system with 50 nodes and want our objects to have a repli-
cation factor of 2, we need to have 50/2 = 25 groups (each group will comprise 2 nodes).

At the moment, the framework only has implemented two simple strategies:

• Random partitioning; and

• Round robin partitioning.

Both strategies have self-explanatory designations. Note that the random partitioning
strategy may (most certainly will) create groups with different number of nodes, thus
making data items to have different replication factors.

Besides of embedding the partitioning logic, the GP provides the interface described
in Table 4.4. This API allows the DM to have access to group related information.

Table 4.4: Interface provided by the GP to the DM.

Operation Description

GETGROUPS() : G Returns a list G with all the existing groups in the system.
GETLOCALGROUP() : g Returns the group g where the local replica is contained.

In order to reduce the communication overhead, we want for a node to be able to lo-
cally infer the composition of any of the system’s groups. For that purpose, the grouping
process has to be deterministic. Thus, with the same input to the GP, all nodes reach the
same outcome.

Our implementation of the random partitioning strategy achieves this by using the
same seed for the pseudo-random number generator. The implementation of the round
robin strategy resorts to an ordered list of the system’s nodes for the partitioning process.

4.3.3 Data Partitioning

The creation of new objects raises another question. Where do the partially replicated ob-
jects should be replicated? In our framework, partially replicated objects are replicated
within a single group. Accordingly, in which group should a new object be replicated? To
handle this decision we designed a new sub-component that encapsulates such decision
making algorithm, the data partitioner (DP). Besides of implementing the data partition-
ing logic, the DP also provides the interface described in Table 4.5.

54

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

Table 4.5: Interface provided by the DP to the DM.

Operation Description

PUBLISHTO(O) : g Returns the group g where object O should be replicated.

At the moment the framework only has implemented three simple strategies:

• Random partitioning;

• Round robin partitioning; and

• Local partitioning.

The first two can maintain the amount of data balanced between the groups, due to
their random/circular nature.

The last one differs from the remainder by establishing that every newly created object
must be replicated by the group of the node where they were created at, thus establishing
affinity between the node that executed the transaction creating the object in question and
the object’s final location. This strategy achieves the same load balancing as the first two
only if the workload is divided relatively equally by all groups.

More sophisticated strategies could, for instance, try to enforce explicit load-balancing,
regarding objects’ distribution among the groups. The system could try to keep track of
the object count in each group and evenly distribute the objects among them taking that
information into account.

4.4 Implementing a Partially Replicated STM

In the context of this thesis we implemented, using the extended framework, a replicated
STM which targets an environment where objects may be partially or fully replicated
among the participants of the distributed system. Transactions are committed across the
system using SCORe [Pel+12a], described in Section 2.3.3.3. This replicated STM imple-
mentation is a concrete realization of the DM component of our architecture (Figure 3.5).

4.4.1 Distributed Objects

As stated in Section 3.2.2, TribuDSTM allows the implementation of different distributed
memory models by combining distribution metadata with the memory locations (objects,
in our case) and also with the help of the Java serialization API.

4.4.1.1 Distribution Metadata

The fully replicated STM by Vale [Val12], used distribution metadata that only included
an universally unique identifier (UUID) [Uui] as it was enough to logically identify a
memory location across the whole system.

55

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

In a partial replication environment, an unique identifier is not sufficient. Since ob-
jects are partially replicated, i.e., each object is replicated in just one group, a node may
attempt to perform a read operation upon an object for which it does not hold a local
copy. In such case, the node must be able to identify the object as being remote and to
obtain the necessary information to request a copy from a node that replicates it.

In our implementation, distribution metadata is comprised by the information de-
picted in Figure 4.4. The inherited UUID, still needed to identify objects across the sys-
tem, is complemented with additional information, namely the group where the object is
replicated and a flag that indicates if the object has already been published.

class PartialRepMetadata implements DistMetadata {
UUID id;
Group group;
Group partialGroup;
boolean isPublished;
...

}

Figure 4.4: Content of the partial replication distribution metadata.

The remaining partialGroup variable is necessary to handle the particular case of
metadata objects associated with variables annotated with @Partial, i.e., when crossing
the boundary from full to partial replication.

Recall that, in Section 3.1.3, with the in-place metadata placement strategy, the run-
time provides the STM algorithms with a transactional metadata upon any transactional
access. Hence, in a transactional read (write) operation the algorithm reads (writes) from
(to) a memory location associated with the provided transactional metadata. In the spe-
cific case of a transactional read, the desired object might not be replicated locally. Under
such circumstances, the STM algorithm requests the DM to obtain a copy of the afore-
mentioned object from some node that replicates it. This case is detected by inspecting
the value of the partialGroup variable. Since the STM algorithm only has access to
the distribution metadata of the provided transactional metadata, the partialGroup

variable informs in which group the object associated with the transactional metadata is
replicated. With this information, the DM is able to request the desired object from the
nodes in that group. Note that the partialGroup variable only matters in this case, as
with all other (regular) distributed objects partialGroup = group. In fact, TxMeta-
data objects only have partialGroup 6= group when they are associated with a field
that is annotated with @Partial, as seen in Figure 4.5.

This figure depicts an example of a simple object graph with three objects, O0, O1

and O2. Each object has a field (f0, f1 and f2, respectively) and the field’s correspond-
ing transactional metadata (tm-f0, tm-f1 and tm-f2, respectively). Field f0 is a reference
to object O1 and f1 is a reference to object O2. Field f1 is also annotated with @Partial,
i.e., everything downstream of this reference is replicated in only one group. The dashed
boxes represent distribution metadata (the three in the top are the distribution metadata

56

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

f0

tm-f0

g: ALL

pg: ALL

g: ALL

pg: ALL

O0

@Partial

f1

tm-f1

g: ALL

pg: G1

g: ALL

pg: ALL

O1

f2

tm-f2

g: G1

pg: G1

g: G1

pg: G1

O2

G1

Figure 4.5: Distribution metadata with the partialGroup and group variables.

of the three regular distributed objects and the three in the bottom are the distribution
metadata of the fields’ transactional metadata). In the distribution metadata of tm-f0 we
see that partialGroup = group (ALL = ALL) as it is a fully replicated field. We en-
counter the same with tm-f2, but in a partial replication scope this is somewhat different
(G1 = G1) since it belongs to a partially replicated object (O2). With tm-f1, since it is an-
notated with @Partial, we see that partialGroup 6= group, as group informs of which
group replicates tm-f1 itself, and partialGroup informs of which group replicates the
object referenced by the field associated with tm-f1. In the distribution metadata of the
regular distributed objects, we can just look at the value in group, since both variables
always hold the same value.

The specific interface provided by the distribution metadata used for partial replica-
tion is described in Table 4.6. It provides getters and setters for both “groups” (GET{GROUP,
PARTIALGROUP} and SET{GROUP, PARTIALGROUP}) and operations for publishing the
object.

Table 4.6: Operations provided by the partial replication distribution medatata API.

Operation Description

GETGROUP(M) : g Returns the group g associated with distribution
metadata M .

SETGROUP(M , g) Assigns group g to distribution metadata M .
GETPARTIALGROUP(M) : g Returns the partial group g associated with distribu-

tion metadata M .
SETPARTIALGROUP(M , g) Assigns the partial group g to distribution metadata

M .
EQUALS(M , M ′) : bool Returns true if distribution metadata M is equal to

distribution metadata M ′, false otherwise.
ISPUBLISHED(M) : bool Returns true if the distribution metadata M was al-

ready published to the network.
PUBLISH(M) Sets the distribution metadata M as being published

to the network.

57

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

4.4.1.2 Serialization

Before the transaction state is sent through the network, its contents are serialized. The
devised partial replication serialization strategy guarantees that each replica manipulates
its own representatives of the replicated objects.

The serialization algorithm is presented in Figure 4.6 and works as follows. When
an object is being serialized, it invokes the function OBJECTREPLACE. As metadata is as-
signed during the object’s creation, the algorithm resorts to the ISPUBLISHED operation to
know if the object as already been sent through the network or not. If ISPUBLISHED(oid)
returns true then the object is said to be published, otherwise it is deemed as private.

Partial replication inserts the need for the serialization algorithm to be aware if its in-
vocation results from a remote read. Accordingly, it must resort to GETSERIALIZATION-
CONTEX (Line 4) to retrieve the serialization context provided by the DT. The invocation
of GETSERIALIZATIONCONTEXT(O) returns true if the algorithm is in the presence of a
read context for object O, false otherwise.

When in the presence of a read context (Line 5), the original object has always to be
serialized (Line 6), since if we are responding to a read request it is because the requester
does not replicate the object locally.

If the object is already published (Line 7), its UUID oid is nominated to be serialized
in its place (Line 8). Type consistency is maintained because the deserialization of oid
when delivered on a replica will return the local representative on that replica, i.e., the
object O such that GETMETADATA(O) = oid (Line 29)1. This is an optimization, since
if the replicas (that compose the group where the object is replicated) already possess a
local representative of the object being serialized it would be a waste of resources to send
the whole object graph through the network.

If the object is private (Line 9), it is set to be published (Line 11) and the original object
is designated to be serialized (Line 14). If the local replica belongs to the group where the
object should be replicated (Line 12), the object is saved in a map (named memory in
Figure 4.6) associating distribution metadata to (published) objects (Line 13).

When an object is being deserialized, it invokes OBJECTRESOLVE. The deserialization
process is different if the local replica belongs to the group where the object should be
replicated (Line 18). In this case, we check if the object’s metadata is associated with
something in the map (Line 19), and if there is an object in the map for that metadata we
return it (Lines 20 and 21), as it is the local representative on the local replica. If not, it
means that it is the first time the local replica receives this object, so we save it in the map
and return the original object itself (Lines 22-24).

If the object should not be replicated in the local replica, i.e., the local replica does
not belong to the group where the object is replicated, the original object is simply re-
turned. (Lines 25-27). In Line 26, although the local replica does not belong to the group

1Recall that the readResolve method designates a delegate to be deserialized instead of the original
object.

58

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

where the object should be replicated, we still save the object in the map. This together
with some more nuances are part of an optimization that we will refer to as the readOpt
optimization. We will explain and clarify this optimization in the next section.

1: memory← ∅

2: function OBJECTREPLACE(O)
3: oid← GETMETADATA(O)
4: isRead ← GETSERIALIZATIONCONTEXT(O)

5: if isRead then
6: return O
7: else if ISPUBLISHED(oid) then
8: return oid
9: else . not ISPUBLISHED(oid)

10: group← GETGROUP(oid)
11: PUBLISH(oid)
12: if ISLOCAL(group) then
13: memory←memory[oid 7→ O]
14: return O

15: function OBJECTRESOLVE(O)
16: oid← GETMETADATA(O)
17: group← GETGROUP(oid)
18: if ISLOCAL(group) then
19: obj←memory(oid)
20: if ∃ obj then
21: return obj
22: else . @ obj
23: memory←memory[oid 7→ O]
24: return O
25: else . not ISLOCAL(group)
26: memory←memory[oid 7→ O]
27: return O

(a) Object Serializer component.

28: function READRESOLVE(oid)
29: return memory(oid)

(b) Distributed Metadata component.

Figure 4.6: Pseudo-code of the replicated objects’ serialization algorithm.

After a careful scrutiny of this algorithm one question may arise. What are the impli-
cations of using the map in Line 1? By keeping references to both the distribution meta-
data and the objects themselves, it prevents them from being garbage-collected when
they become unreachable by the application, thus causing memory leaks.

The implemented solution, taken from Vale [Val12], is twofold. It used the java.

util.WeakHashMap implementation, in which keys (and not values) are held by weak
references. Informally, a weak reference is a reference which does not prevent their refer-
ents from being garbage-collected.

This still does not solve the problem because (1) the value objects themselves strongly
reference the distribution metadata (which are the map keys), therefore preventing them
from being garbage-collected; and (2) the values themselves are strongly referenced, pre-
venting them from being garbage-collected. This is solved by wrapping the value objects

59

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

in weak references before being put in the map. This way when an object becomes un-
reachable by the application it can be garbage-collected from the map, which in turn
makes the associated key unreachable, thus also being garbage-collected.

4.4.1.3 Programming Model Limitations Revisited

In Section 4.2.1, we explained some of the limitations of the provided programming
model. We introduced a restriction, that we called the checkGroup restriction, which could
not be explained adequately without more information about how we implemented dis-
tributed objects in the framework.

Recalling, the framework will throw an exception at runtime if the application tries
to write an object that is replicated in a group to a memory location associated with a
transactional metadata that is replicated in a different group. One could think of two
simple ways to surpass this: (1) we could merge the two groups, creating a new group
comprised by the nodes in both groups; and (2) we could change the group of one of the
objects so that both objects are replicated in the same group. Both solutions would require
the system to notify every node of the intervening groups to modify the corresponding
objects’ metadata accordingly. We think that is would impose an unsatisfying overhead
(and in case (1) the partially replicated objects could degenerate in fully replicated).

Figure 4.7 shows the verification that the STM algorithm makes in every (transac-
tional) write operation done to an object2, i.e., when an application makes a write access
inside a transaction.

1: procedure CHECKGROUPRESTRICTIONS(O, m)
2: txOid← GETMETADATA(m)
3: objOid← GETMETADATA(O)
4: txPartialGroup← GETPARTIALGROUP(txOid)
5: objGroup← GETGROUP(objOid)
6: if ISPUBLISHED(txOid) and ISPUBLISHED(objOid) then
7: if not EQUALS(txPartialGroup, objGroup) then
8: throw Exception
9: else if ISPUBLISHED(txOid) and not ISPUBLISHED(objOid) then

10: objPartialGroup← GETPARTIALGROUP(objOid)
11: txPartialGroupMembers← GETMEMBERS(txPartialGroup)
12: SETGROUP(objGroup, txPartialGroupMembers)
13: SETGROUP(objPartialGroup, txPartialGroupMembers)
14: else if not ISPUBLISHED(txOid) and ISPUBLISHED(objOid) then
15: objGroupMembers← GETMEMBERS(objGroup)
16: SETGROUP(txPartialGroup, objGroupMembers)
17: else . not ISPUBLISHED(txOid) and not ISPUBLISHED(objOid)
18: objPartialGroup← GETPARTIALGROUP(objOid)
19: txPartialGroupMembers← GETMEMBERS(txPartialGroup)
20: SETGROUP(objGroup, txPartialGroupMembers)
21: SETGROUP(objPartialGroup, txPartialGroupMembers)

Figure 4.7: Pseudo-code for checking group restrictions in every (transactional) write
operation.

2This excludes all the primitive data types.

60

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

Very briefly, the procedure receives two parameters: the written object O and the
transactional metadata m associated with the written memory location (recall that trans-
actional metadata objects are also distributed objects). If both objects are already pub-
lished (Line 6) and the groups where they are replicated are not the same (Line 7), we
throw a runtime exception since we do not allow this case. Otherwise, we have three
possible cases: (1) the transactional metadata is published and the object is not (Line 9);
(2) the object is published and the transactional metadata is not (Line 14); and (3) both
objects are not published (Line 17). In all these three cases, we can modify the distribu-
tion metadata of one of the objects since at least one of them is not published. In case (1),
since the transactional metadata is already published, we have to modify the group of the
written object to conform to the group of the transactional metadata. In case (2) we find
the opposite, where is the written object that is already published. In this case we modify
the group of the transational metadata to conform to the group of the written object. In
case (3), both the transactional metadata and the written object are not published, so we
decided to take the same approach as in case (1).

4.4.2 Distributed Transactions

In full replication environments, certification-based protocols show up as an interesting
option by no requiring synchronization between nodes during the execution of transac-
tions. These protocols are simple and easy to implement, and above all, they require few
communication steps.

However, it is not easy to support partial replication from full replication protocols.
Certification-based protocols rely in the TOB communication primitive to ensure that all
nodes receive transactions in the same order, functioning as a finite automaton. In the
case of partial replication this solution does not work. For example, consider a system
comprised by three nodes (N1, N2 and N3). Node N1 replicates objects B and C, N2

replicates A and B, and N3 replicates A and C. Consider further that there are two trans-
actions T1 and T2 being concurrently executed in N1 and N2, respectively. Transaction
T1 modifies B and T2 modifies A and B. In the end, N1 and N2 certify both transactions,
but N3 (since it only replicates A and C) only certifies T2. If the total delivering order of
the transactions is T1 and T2, N1 and N2 validate T1 and abort T2, but N3 validates T2,
modifying the value of A, thus making the data inconsistent between nodes.

Thus, nodes cannot validate transactions alone, because they do not have all the nec-
essary information. They have to agree among them which transactions are validated
and which are aborted. There must be a vote. Following this thought, several pro-
tocols for partial replication have been proposed, based in 2PC. First, by distributed
databases [Sch+10; Ser+07; Sou+01] and more recently in the context of TM [Pel+12a;
Pel+12b].

61

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

In Section 2.3.3.3, we presented the two proposed protocols for partial replication in
the context of TM. Of these, we decided to implement SCORe as it seems to scale better
(with its logical clocks vs. the vector clocks of GMU) and to be easier to implement.

4.4.2.1 SCORe

SCORe [Pel+12a] is a scalable one-copy serializable partial replication protocol. It is a
genuine protocol, thus it ensures that only the nodes that maintain data accessed by a
transaction are involved in its processing. It also guarantees that read operations always
access consistent snapshots, thanks to a one-copy serializable multi-version scheme, which
never aborts read-only transactions and spares them from any (distributed) validation.
The protocol implements a distributed multi-version scheme coupled with a distributed
logical clock synchronization scheme that only requires the exchange of a scalar clock
value.

To commit transactions, SCORe relies on a genuine atomic commit protocol that can
be seen as the fusion between the 2PC algorithm and the Skeen’s total order multi-
cast [Déf+04]. 2PC is used to validate update transactions and the Skeen’s total order
multicast is used to serialize transactions.

SCORe maintains two scalar timestamps per node, namely commitId and nextId.
The former maintains the timestamp that was attributed to the last update transaction to
have committed on that node. The latter keeps track of the next timestamp that the node
will propose when it will receive a commit request for a transaction that accessed some of
the data that it maintains. Snapshot visibility for transactions is achieved by associating
to each one a scalar timestamp called snapshot identifier (sid), that is established upon a
transaction’s first read operation.

The pseudo-code of the SCORe protocol is reported in Figures 4.8, 4.9 and 4.10, with
regard to the already defined APIs. Figure 4.8 describes the invocation of the commit
operation in TribuSTM, Figure 4.9 describes the distributed commit phase of the protocol,
and Figure 4.10 describes the read operations in the protocol. The protocol works as
follows.

The DT maintains, for local transactions, a mapping between the transaction’s identi-
fier and the transaction itself (Line 8), and for remote transactions, a mapping between the
transaction’s identifier and the transaction’s state (Line 9). It also maintains two priority
queues with tuples 〈transaction’s identifier × transaction’s sid〉, ordered by transaction’s
sid, and a set of transactions’ states (Line 12).

Commit. When a node Ni requests to commit a transaction T , COMMIT is invoked on
TribuSTM (Line 2), which delegates to the DT by issuing ONCOMMIT.

When ONCOMMIT is issued, on the DT, we first add the transaction to the map of
local transactions (Line 14). To guarantee genuineness, SCORe involves in the commit
phase of T only the nodes that maintain a copy of the data items that T accessed, so we
proceed by obtaining the group of nodes that are involved in this commit (i.e., the nodes

62

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

1: committed← false

2: function COMMIT(T)
3: ONCOMMIT(T)
4: return committed

5: procedure COMMITPROCESSED(T , c)
6: committed← c
7: T was processed

Figure 4.8: Pseudo-code for commit invocation in TribuSTM.

that comprise the groups where the data items in the transaction’s write and read sets
are replicated, or simply the nodes belonging to Nodes(T.rs ∪ T.ws)), and also the state
of the transaction which is subsequently reliably multicast to that group (Lines 15-17).
This represents the sending of the prepare message of 2PC. At this point, this thread of
execution (the application thread) waits for the transaction processing to finish.

Prepare Message. Upon the delivery of the prepare message (reliably multicast), the
ONRMDELIVER callback is invoked by a thread from the GCS (Line 19). Depending
on whether the received transaction state is local or remote, the DT either obtains the
local transaction (Line 21) or recreates the remote transaction (Line 24). If the transaction
is a remote one, we also add it to the map of remote transactions (Line 23). Next, we
verify whether the transaction can be serialized after every transaction that has locally
committed so far. To this end, we validate the transaction (Line 25). In this validation
we attempt to acquire exclusive and shared locks for the data items in the transaction’s
write and read sets, respectively, that are locally maintained. We also validate the read
set, verifying that none of the read data items has been overwritten by a more recently
committed transaction.

Vote Message. If the transaction passes the validation (Line 27), the protocol exploits
the vote message of 2PC to overlap a distributed agreement scheme that aims to estab-
lish the final serialization order for the transaction. We increment the nextId times-
tamp (Line 28), insert the pair 〈T .id, nextId〉 in pendQ, a queue of pending committing
transactions (Line 29) and send back to the transaction coordinator the value of nextId in
piggyback to the vote message (Line 30).

The coordinator gathers the vote messages reliably unicasted by the participants
(Line 32), keeping the maximum of the proposed timestamps (Lines 37 and 38), and mul-
ticasts back a decide message with the transaction’s final commit timestamp (Line 60).

Decide Message. Upon the reception of the decide message (Line 41), we have two pos-
sibilities: (1) the outcome is positive, meaning this transaction may be committed; and
(2) the outcome is negative, meaning this transaction must be aborted. In case (1), with
a positive outcome, we buffer the transaction in a queue of stable transactions, namely
stableQ, waiting to be committed (Line 44). This is required because since SCORe wants
to ensure 1SR without requiring the validation of read-only transactions, it guarantees
that the commit events of all update transactions (even non-conflicting ones) are totally

63

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

ordered across all the nodes of a same group. Thus, a transaction T with final timestamp
fsn is immediately committed only if there are no other transactions in both pendQ and
stableQ with timestamp less that fsn. Otherwise, the transaction is buffered in sta-

bleQ till it can be ensured that no other pending transaction will ever receive a final
commit timestamp less then fsn. In case (2), with a negative outcome, we have to release
the locks acquired at the time of validation (Line 55) and to generate the appropriate no-
tification (Line 56). The transaction is now processed (with a negative outcome), thus we
generate a notification to the application thread. On the node where the transaction is lo-
cal, this will signal the application thread (Lines 7 and 18) which returns the result of the
commit request (Line 4). In either cases the transaction is removed from pendQ (Line 45).

In Lines 31 and 57, we process any pending transactions, since these are the only
occasions where both pendQ and stableQ are possibly modified. It works as follows. A
transaction T is committed if the following condition is true:

∃〈T, fsn〉 : 〈T, fsn〉 = stableQ.head ∧ @〈T ′, sn〉 : 〈T ′, sn〉 = pendQ.head ∧ sn ≤ fsn

This condition is verified in Line 71, and if it is true, we apply the write set and release
the acquired locks (Lines 86 and 87).

Since multiple transactions can end up with the same sid during the vote phase, we
can only process these transactions when all of them have been applied. To this end we
insert the transaction’s state in a set of transactions waiting to be processed (Lines 89-
93). When it is safe to make the snapshot visible (Lines 65-66, 71-72 and 82), we update
the commitId timestamp of the node and invoke RELEASETXS, where all the transactions
waiting to be processed are processed. The transactions that are local to the node signal
the application thread.

Note that, differently from the original SCORe protocol, for simplicity sake we do not
implement timeouts when the coordinator is gathering the vote messages nor when try-
ing to acquire the locks. The original protocol also suggests distributed garbage collecting
mechanisms to deal with obsolete data versions. Instead, we use a multi-version scheme
that has a fixed number of versions (that can be parametrized by the user). This implies
that, unlike the original protocol, our implementation may abort read-only transactions.

Since we are in a partially replicated environment, some data items may be not repli-
cated locally. So, some read operations may have to access remote data replicated in other
nodes. The pseudo-code of the read operations in SCORe is described in Figure 4.10, and
works as follows.

Write operations are buffered in a private write set, which is only made visible upon
transaction’s commit, as in regular STM algorithms.

Read Operations. When a read operation is triggered in TribuSTM, the STM algorithm
needs to return the value stored in the desired memory location, but that data may not
be replicated locally, so it requests the distributed protocol to check for the data locality.

64

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

But first, the STM algorithm checks if the accessed data item has already been updated
by the transaction, returning in this case the value present in the transaction’s write set
(it also inserts the accessed data item in the transaction’s read set). If the accessed data
item is not in the transaction’s write set, the STM algorithm passes the control of the read
operation to the distributed protocol, issuing ONREAD (with two parameters: transaction
T and transactional metadata object m).

Remember that, when using the in-place metadata placement strategy (Section 3.1.3),
the runtime provides the STM algorithm with the transactional metadata object associ-
ated with the accessed memory location.

Firstly, the protocol establishes which of the versions of the accessed data item is visi-
ble to the transaction. In SCORe, transactions establish the sid that they use to determine
version’s visibility upon their first read operation. After that, the protocol checks for the
data locality in Line 113. Here, the protocol also checks for the locality of the object graph
being accessed. This is what we called the readOpt optimization, in Section 4.4.1.2.

ReadOpt Optimization. In Section 4.4.1.2, when explaining the serialization algorithm,
even if an object should not be replicated in the local node we still save it in the memory
map (Line 26, Figure 4.6). We use weak references in this map, so we do not prevent
garbage collection. Here, when we request a remote object from the nodes that replicate
it and we receive the object, the object is saved with weak references by the memory map,
but with a strong reference by the transaction’s read set. This is advantageous when we
read a remote object that has references to other objects. This way we can do some sort of
“caching”, reducing the number of remote reads needed to access objects downstream of
the already read (remote) object.

Recall Figure 4.5. The distribution metadata of the accessed transactional metadata
has partialGroup 6= group only when the accessed memory location is annotated with
@Partial, the “border” of a partially replicated memory location. The distribution meta-
data has partialGroup = group only when the accessed memory location is totally
replicated (outside the “border” of a partially replicated memory location) or when the
accessed memory location is referenced by a memory location annotated with @Partial

(inside the “border” of a partially replicated memory location).

This is verified in Line 112, where if partialGroup= group means that we already
had to do a remote read for the “border” memory location and that we have the rest of
the object graph cached. So, we just need to do a local read.

The logic associated with the execution of a read operation, in a node Ni, triggered
by a (either local or remote) transaction T is encapsulated in the DOREAD function.
First, if the transaction’s sid is higher than the node’s nextId, the latter is set equal to
T.sid (Line 137), to ensure that update transactions that subsequently issue a commit re-
quest on this node are serialized after T . Next, the version visible by the transaction is
determined by selecting the most recent version having a commit timestamp less than

65

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.4. Implementing a Partially Replicated STM

8: localTxs← ∅
9: remoteTxs← ∅

10: pendQ← nil: priority queue of 〈id, sid〉
11: stableQ← nil: priority queue of 〈id, sid〉
12: toProcess← ∅

13: procedure ONCOMMIT(T)
14: localTxs← localTxs[T .id 7→ T]
15: group← T.involvedNodes
16: S ← CREATESTATE(T)
17: RMCAST([S], group)
18: wait until T is processed

19: procedure ONRMDELIVER([S], s)
20: if SELF(s) then
21: T ← localTxs(S.id)
22: else
23: remoteTxs← remoteTxs[S.id 7→ S]
24: T ← RECREATETX(S)
25: outcome← VALIDATE(T)
26: next← −1
27: if outcome then
28: next← (Ni.nextId← Ni.nextId +1)
29: pendQ← pendQ ∪ 〈T .id, next〉
30: RUCAST([T .id, outcome, next], s)
31: PROCESSTX

32: procedure ONRUDELIVER([id, outcome, sid], s)
33: T ← localTxs(id)
34: if not outcome then
35: FINALIZEVOTEPHASE(T , false)
36: else
37: if sid > T .maxVote then
38: T .maxVote← sid
39: if is last vote then
40: FINALIZEVOTEPHASE(T , true)

41: procedure ONRMDELIVER([id, outcome, sid], s)
42: if outcome then
43: Ni.nextId← MAX(Ni.nextId, sid)
44: stableQ← stableQ ∪ 〈id, sid〉
45: pendQ← pendQ \〈id, –〉
46: ADVANCECOMMITID
47: if not outcome then
48: if SELF(s) then
49: T ← localTxs(id)
50: localTxs← localTxs \ T .id
51: else
52: S← remoteTxs(id)
53: T ← RECREATETX(S)
54: remoteTxs← remoteTxs \ T .id
55: UNLOCK(T)
56: COMMITPROCESSED(T , false)
57: PROCESSTX

58: procedure FINALIZEVOTEPHASE(T , outcome)
59: group← T.involvedNodes
60: RMCAST([T .id, outcome, T .maxVote], group)

61: procedure PROCESSTX
62: ADVANCECOMMITID
63: snId← −1
64: loop
65: if stableQ is empty then
66: if snId ! = −1 then
67: Ni.commitId← snId
68: RELEASETXS

69: return
70: 〈id, sid〉 ← stableQ.head
71: if ∃〈id′, sid′〉 ∈ pendQ : sid′ ≤ sid then
72: if snId ! = −1 then
73: Ni.commitId← snId
74: RELEASETXS

75: return
76: if ∃ remoteTxs(id) then
77: S← remoteTxs(id)
78: T ← RECREATETX(S)
79: else
80: T ← localTxs(id)
81: T .sid← sid
82: if snId ! = −1 and sid > snId then
83: Ni.commitId← snId
84: RELEASETXS

85: snId← T .sid
86: APPLYWS(T)
87: UNLOCK(T)
88: stableQ← stableQ \〈id, sid〉
89: if ∃ remoteTxs(id) then
90: toProcess← toProcess ∪ S
91: remoteTxs← remoteTxs \ id
92: else
93: toProcess ← toProcess ∪ CREATES-

TATE(T)

94: procedure RELEASETXS
95: for all tx ∈ toProcess do
96: if ∃ localTxs(tx.id) then
97: T ← localTxs(tx.id)
98: localTxs← localTxs \ tx.id
99: else
100: T ← RECREATETX(tx)
101: COMMITPROCESSED(T , true)
102: toProcess← toProcess \ tx

Figure 4.9: Pseudo-code for the commit phase of the SCORe protocol.

T.sid (Line 140-142). But before that, the transaction must wait for the completion of
the commit of any transaction that is updating the same data item and is currently in its
commit phase (Line 139).

66

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.5. Summary

Remote Read Operation. The logic for handling remote read operations is defined by
the ONRMDELIVER (Line 124) and ONRUDELIVER (Line 131) procedures. Note that,
even though transactions establish their own sid only upon their first read operation,
a node attempts to advance their local timestamps commitId and nextId whenever it
receives a message related with a remote read from another node in the system, inform-
ing that snapshots with higher timestamps have already been committed. This aims at
maximizing the freshness of the snapshots visible by transactions (Line 144).

In Lines 121-122 we can see a simple optimization done by SCORe. It aborts update
transactions which, based on their sid, are forced to observe, upon a read operation,
overwritten data by more recently committed transactions.

For more detailed and generic information about the SCORe protocol we direct the reader
to the original article [Pel+12a].

4.5 Summary

In this chapter we described how we extended the software from Chapter 3 to support
partial replication as a possible distributed memory model. In Section 4.2 we presented
the framework’s new programming model and its limitations/restrictions, and in Sec-
tion 4.3 we detailed the specific extensions done to the framework. In Section 4.4 we
provide a detailed description of the implementation, in the framework, of a partially
replicated STM using SCORe to maintain consistency when committing transactions.

This chapter’s contribution was featured in the article “Replicação Parcial com Me-
mória Transacional Distribuída”, Proceedings of the Simpósio de Informática (INForum),
2013 [Sil+13].

67

4. SUPPORTING PARTIAL REPLICATION WITH TRIBUDSTM 4.5. Summary

103: function ONREAD(T , m)
104: firstRead← T .firstRead
105: if firstRead then
106: T .sid← Ni.commitId
107: T .firstRead← false
108: M ← GETMETADATA(m)
109: group← GETGROUP(M)
110: partialGroup← GETPARTIALGROUP(M)
111: localRead← CONTAINS(partialGroup, Ni)
112: localGraph← EQUALS(partialGroup, group)
113: if localRead and localGraph then
114: 〈value, lastCommitted, mostRecent〉 ← DOREAD(T .sid, M)
115: else
116: RMCAST([T .id, M , firstRead, T .sid], partialGroup)
117: wait until remote read is processed
118: 〈value, lastCommitted, mostRecent〉 ← T .readRes
119: if firstRead then
120: T .sid← MAX(T .sid, lastCommitted)
121: if T .isUpdate and not mostRecent then
122: ABORT(T)
123: return value

124: procedure ONRMDELIVER([id, metadata, firstRead, sid], s)
125: readSid← sid
126: if firstRead and Ni.commitId > readSid then
127: readSid← Ni.commitId
128: 〈value, lastCommitted, mostRecent〉 ← DOREAD(readSid, metadata)
129: RUCAST([id, value, lastCommitted, mostRecent], s)
130: UPDATENODETIMESTAMPS(readSid)

131: procedure ONRUDELIVER([id, value, lastCommitted, mostRecent], s)
132: T ← localTxs(id)
133: T .readRes← 〈value, lastCommitted, mostRecent〉
134: UPDATENODETIMESTAMPS(lastCommitted)
135: remote read is processed

136: function DOREAD(sid, metadata)
137: Ni.nextId← MAX(Ni.nextId, sid)
138: m←memory(metadata)
139: wait until (Ni.commitId ≥ sid or ISEXCLUSIVEUNLOCKED(m))
140: version← GETLASTVERSION(m)
141: while version.verNum > sid do
142: version← version.previous
143: return 〈version.value, Ni.commitId, ISLASTVERSION(m, version)〉

144: procedure UPDATENODETIMESTAMPS(lastCommitted)
145: Ni.nextId← MAX(Ni.nextId, lastCommitted)
146: Ni.maxSeenId← MAX(Ni.maxSeenId, lastCommitted)
147: ADVANCECOMMITID

148: procedure ADVANCECOMMITID
149: if Ni.maxSeenId > Ni.commitId and pendQ is empty and stableQ is empty then
150: Ni.commitId← Ni.maxSeenId

Figure 4.10: Pseudo-code for the read event of the SCORe protocol.

68

5
Evaluation

This chapter reports the results of an experimental study aimed at evaluating the system’s
characteristics. We use some known benchmarks from the literature.

We begin by presenting the experimental settings used in these experiments, in Sec-
tion 5.1. Next, in Section 5.2, we explain all the used benchmarks and its characteristics.
Then, we proceed by presenting and analysing the obtained results in Section 5.3. We
evaluate the system’s memory consumption, the impact of data partitioning in the sys-
tem’s overall performance, the system’s behaviour under different workloads, and so
forth.

5.1 Experimental Settings

The experiments presented in this chapter were performed in two different clusters.
The first cluster, henceforth called Cluster@DI, is a heterogeneous cluster comprised

by 8 nodes. The first five nodes are equipped with 2×Quad-Core AMD Opteron 2376
at 2.3Ghz, 4 × 512KB cache L2, and 16GB of RAM. The last three nodes are equipped
with 1×Quad-Core Intel Xeon X3450 at 2.66Ghz (with hyper-threading) and 8GB of
RAM. The operating system is the Debian 5.0.10 Linux distribution with the Linux 2.6.26-
2-amd64 kernel, and the nodes are interconnected via private gigabit ethernet. The max
send buffer was set to 640KB and the max receive buffer to 25MB, as needed by the
JGroups configuration. The installed Java platform is version 6, specifically OpenJDK
Runtime Environment (IcedTea6 1.8.10, package 6b18-1.8.10-0 lenny2).

The second cluster, henceforth called Supernova, is also a heterogeneous cluster with
a total of 570 nodes, with the characteristics presented in Table 5.1. At all times there are
around 300 active nodes in the cluster. The operating system is Scientific Linux 5.9 with

69

5. EVALUATION 5.1. Experimental Settings

the Linux 2.6.18-348.3.1.el5 kernel, and the nodes are interconnected via Infiniband. The
max send and receive buffers were set to the same values as in Cluster@DI, but due to
cluster configurations nodes only allow a max receive buffer of 16.78MB. The installed
Java platform is version 6, specifically Java SE Runtime Environment (build 1.6.0_31-b04)
and Java HotSpot 64-Bit Server VM (build 20.6-b01, mixed mode). To run computations
the cluster uses PBSPro1, a batch system, so the user has no control over when the jobs
run and the nodes are shared among jobs.

Table 5.1: Specifications of the Supernova cluster nodes.

Specifications Generation II (126) Generation III (40) Generation IV (404)

Processor Intel Xeon E5345 2.33Ghz Intel Xeon L5420 2.5Ghz Intel Xeon X5650 2.67Ghz
Num. Cores 8 cores (2× quad-core) 8 cores (2× quad-core) 12 cores (2× six-core)
L1/L2/L3 Cache 128KB/8MB/– 256KB/12MB/– 64KB/1536KB/12MB
RAM 16GB 16GB 24GB

Cluster@DI can be seen as a representative of small private clouds or data center en-
vorinments, with dedicated servers and a fairly large amount of available (computational
and memory) resources per node. In turn, Supernova can be seen as a representative of
high performance computing (HPC) infrastrutures, which are typically characterized by
somewhat powerful nodes but with more competitive resource sharing.

In Cluster@DI, the results were obtained from five runs of each experiment configura-
tion, dropping the highest and the lowest results, and averaging the remaining three. In
Supernova, we used only nodes of generation IV (to have control in what kind of nodes
the experiments were executed), and since we could not have exclusive use of the nodes,
the results were obtained from ten runs and we also present the corresponding standard
deviations.

5.1.1 System Configurations

In order to allow a comparison between full and partial replication strategies, we used
two configurations in the framework. For the full replication configuration we used the
implementation done by Vale [Val12], and for the partial replication configuration we
used our implementation (Section 4.4).

Partial Replication Configuration. In the partial replication configuration, the local
STM layer uses a multi-version algorithm as described in [Pel+12a]. The DM implemen-
tation is the SCORe protocol described in Section 4.4.2.1.

Full Replication Configuration. In the full replication configuration, the local STM
layer uses the TL2 algorithm [Dic+06]. The DM implementation is the non-voting cer-
tification protocol described in Section 2.3.2.3.

1http://www.pbsworks.com

70

http://www.pbsworks.com

5. EVALUATION 5.2. Benchmarks

Group Communication System. With regard to the underlying GCS providing the nec-
essary communcation primitives (TOB for full replication and point-to-point communi-
cation for partial replication), we considered only one implementation: JGroups [Ban98]
(but switching between GCS is done by parameterization when executing the target pro-
gram, hence no code rewriting is needed). Concretely, we used JGroups version 3.3.0
final.

JGroups is a well known toolkit used in several projects (e.g., JBoss [Red13]). It was
configured according to the UDP configuration from the freely available repository2, in
addition to the SEQUENCER protocol which provides non-uniform total order (for the full
replication configuration).

JGroups provides non-uniform total order using a fixed sequencer. Informally, as de-
picted in Figure 5.1, in the fixed sequencer algorithm a single node is assigned the role of
sequencer and is responsible for the ordering of messages. Any node n wanting to broad-
cast message m first unicasts m to the sequencer, which then broadcasts m on behalf of
n. Intuitively, this algorithm should not be fair with regard to message ordering, as the
sequencer should have the upper hand, since it does not need to unicast its messages to
itself. The relaxation of the uniformity property is likely to allow higher throughput, and
even more unfairness, because it does not require all nodes to send back acknowledge-
ments to the sequencer.

Figure 5.1: Fixed sequencer.

5.2 Benchmarks

5.2.1 Red-Black Tree Microbenchmark

To evaluate our implementation, we start by considering a common microbenchmark in
the literature (taken from the Deuce STM benchmarks), the Red-Black Tree. It is com-
posed of three types of transactions: (1) insertions, which add an element to the tree (if
not already present); (2) deletions, which remove an element from the tree (if present);
and (3) searches, which search the tree for a specified element. Insertions and deletions
are said to be write transactions.

2https://github.com/belaban/JGroups

71

https://github.com/belaban/JGroups

5. EVALUATION 5.2. Benchmarks

The microbenchmark was parametrized according to Table 5.23. The tree was pop-
ulated with 32 768 pseudo-randomly generated values, ranging from 0 to 131 072, thus
having a height of 15. Each thread executed 10% of write transactions.

Table 5.2: Parametrization of the Red-Black Tree microbenchmark.

Initial size (-i) Value range (-r) Write transactions % (-w)

32768(215) 131072(4× initial size) 10

This workload is characterized by very small and fast transactions that perform little
work, and contention is very low.

In order to use the partial replication configuration we had to add the corresponding
annotation @Partial. Following the idea described in Section 4.2, we applied the annota-
tion to the value stored by the tree nodes, as depicted in Figure 5.2.

public class Node {
int key;
@Partial
int value;
Node p; // parent
Node l; // left child
Node r; // right child
int c; // color

public Node() {}
}

Figure 5.2: Annotation @Partial applied in tree node.

5.2.2 Adapted Vacation

This benchmark is from the STAMP suite [Min+08], a more complex benchmark that
allows us to test the system with workloads substantially different from the previous
microbenchmark.

The Vacation benchmark emulates a travel reservation system. This application im-
plements an online transaction processing system that is implemented as a set of trees
that keep track of customers and their reservations for various travel items. During the
execution of the workload, several client threads perform a number of sessions that in-
teract with the travel system’s database. In particular, there are three distinct types of
sessions/transactions: reservations, cancellations and updates [Min+08]. All these trans-
actions are update transactions. So, we adapted the benchmark in order to also allow
the execution of read-only transactions. Our adaptation consists of implementing a new
read-only session/transaction that consults reservations.

3Unless stated otherwise, for all the benchmarks, we used the parametrizations presented in this section’s
tables.

72

5. EVALUATION 5.3. Results

Each of the client sessions is enclosed in a coarse-grain transaction in order to ensure
the validity of the database. Consequently, transactions are of moderate size.

The benchmark was parametrized according to Table 5.3, which is the low contention
configuration presented in [Min+08], but user transactions now consist of reservations
and consultations. The database has 16 384 records of each reservation item, and clients
perform 4096 sessions. Of these sessions, 98% are user sessions, and 90% of them are con-
sultations (the rest being reservations or cancellations), the remainder create or destroy
items. Sessions operate on up to 2 items and are performed on 90% of the total records.

Table 5.3: Parametrization of the Vacation benchmark.

Operated items (-n) Accessible records (-q) User transactions (-u) Records (-r) Sessions (-t)

2 90 98 16384 4096

The original benchmark used only one node to populate the data structures. We mod-
ified it so that each group has one node (the “group master”) that populates a part of the
data structures, enabling us to use the local data partitioner.

Similarly to the previous microbenchmark, in this benchmark we applied the @Partial

annotation to the values (in the nodes) of the trees that work as the system’s database.

5.2.3 TPC-W

TPC-W [Tra13] models an online bookstore. Servers handle 14 different user requests
such as browsing, searching, adding products to a shopping cart, or placing an order.
The user requests (operations) are much more demanding in terms of processing power
when compared to the previous benchmarks, allowing us to test the system with more
challenging workloads. Additionally, this benchmark is representative of client-server
architectures. The initial data set is generated with 1000 items. For our experiment we
ran the browsing mix, which consists of 95% of operations related with browsing and 5%
related with purchases. This benchmark was taken from the freely available repository4.

As in the other two benchmarks, we applied the @Partial annotation to the values
stored by the used data structures (namely red-black trees and hash maps)5.

5.3 Results

Now, we present and analyse the obtained results.

4https://github.com/pedrogomes/tpcw-benchmark
5For detailed information about the used data structures and the corresponding application of the

@Partial annotation, the reader can go to https://github.com/jaasilva/TPCw-benchmark/tree/
partial_random

73

https://github.com/pedrogomes/tpcw-benchmark
https://github.com/jaasilva/TPCw-benchmark/tree/partial_random
https://github.com/jaasilva/TPCw-benchmark/tree/partial_random

5. EVALUATION 5.3. Results

5.3.1 Memory Consumption

One of the obvious characteristics of partial data replication is that as the number of
groups grows, the amount of data that each group replicates decreases. This means that,
in a concrete system, as the number of groups grows each node consumes less memory.

To assess if our system embeds this characteristic, we used the Red-Black Tree mi-
crobenchmark. This microbenchmark has a population phase where one of the nodes
populates the entire data structure, hence to ensure an even data partitioning we used
the round robin data partitioner. We also parametrized the microbenchmark with 0% of
write transactions to verify the memory used once the population of the data structure is
done, without removing or inserting nodes.6

We compared the partial replication configuration versus the full replication configu-
ration, and we obtained the result shown in Figure 5.3.

 0

 200

 400

 600

 800

 1000

1 2 4 8

M
em

or
y

pe
r n

od
e

(M
B)

Groups

JGroups, RBTree (8 Nodes, 4 Thrs, RRDP, 0% write)

Full
Partial

Figure 5.3: Memory consumption on the Red-Black Tree microbenchmark (Cluster@DI).

This was an expected result. As Figure 5.2 shows, the tree’s nodes store little infor-
mation. Each node stores a value of type integer that is the same as the key, and it is
that value that is annotated with the @Partial annotation. This means that the integer
value is partially replicated. The result of this, in Java, is that if group A does not repli-
cate integer value B, all the nodes in group A will still have the integer value but with
the value 0 (zero), and will have to request the partially replicated value from another
group. So, in this microbenchmark we will never save memory. In fact, Figure 5.2 shows
that the partial replication configuration uses more memory. This happens because both
the transactional and distribution metadata, in the partial replication configuration, store
substantially more information that the ones used by the full replication configuration.

6We also used the JVM flag -Xincgc. It allows applications to consume less memory since it does an
incremental garbage collection, and the consumed memory has less fluctuations.

74

5. EVALUATION 5.3. Results

The partial replication configuration will only save memory when the partially repli-
cated fields are objects with a considerable amount of data, because in this case, the
groups that does not replicate the field will have a pointer to a null value instead of
the object.

To verify our intuition, we modified the Red-Black Tree microbenchmark in order
to store in each node an object with 3 MB of data. We named it Adapted Red-Black Tree
version 1 microbenchmark. We parametrized the microbenchmark according to Table 5.4.

Table 5.4: Parametrization of the Adapted Red-Black Tree version 1 microbenchmark.

Initial size (-i) Value range (-r) Write transactions % (-w)

1024(210) 4096(4× initial size) 0

The result is shown in Figure 5.4. With this experiment we can see that, in fact, as the
number of groups grows, the memory used by each node decreases.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8

M
em

or
y

pe
r n

od
e

(M
B)

Groups

JGroups, Adapted RBTree v1 (8 Nodes, 4 Thrs, RRDP, 0% write)

Full
Partial

Figure 5.4: Memory consumption on the Adapted Red-Black Tree version 1 microbench-
mark (Cluster@DI).

Note that with one group partial replication is mimicking full replication, since there
is only one group comprised by all the nodes in the system and consequently all nodes
replicate the entire system’s data set. We can see the expected overhead verified in the
previous test. With one group, partial replication consumes more memory that the full
replication configuration.

In the other end of the spectrum, with eight groups, partial replication is mimicking
pure data distribution, since there are eight groups and each group is comprised by only
one node. This means that partially replicated data items are replicated only by one node.

75

5. EVALUATION 5.3. Results

5.3.2 Impact of Data Partitioners

In Section 4.3.3, we presented the data partitioning strategies implemented in our frame-
work. Since these strategies decide where newly created data is located, they have impact
on the application’s behaviour.

To study this impact we used the Red-Black Tree microbenchmark, and we executed
the microbenchmark using the three data partitioning strategies. Recall that we have not
modified the microbenchmark, so the population phase is performed by a single node,
and the amount of remote read operations is randomly decided.

The result is depicted in Figure 5.5. Since the data partitioning strategies influence
the amount of remote read operations performed by the system we also measured its
percentage.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8

Tr
an

sa
ct

io
ns

/s
ec

on
d

Groups

JGroups, RBTree (8 Nodes, 4 Thrs, 10% write)

LDP
RRDP

RDP

(a) Throughput.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 4 8

R
em

ot
e

R
ea

ds
 (%

)

Groups

JGroups, RBTree (8 Nodes, 4 Thrs, 10% write)

LDP
RRDP

RDP

(b) Remote reads percentage.

Figure 5.5: Throughput and remote reads percentage on the Red-Black Tree microbech-
mark (Cluster@DI).

The local data partitioner has the weakest performance (Figure 5.5a) because of its
nature. Since objects are replicated by the group of the node where they were created
at (Section 4.3.3), during the population phase of the microbenchmark all the created
objects are replicated in only one group, which causes some imbalance, forcing the other
groups to perform a lot more remote read operations (Figure 5.5b). This partitioning
strategy is also dependent on workload distribution (aspect that the partial replication
configuration can control, as presented in Section 5.3.4.2) performed by the system, and
on the number of objects created by transaction. The round robin and the random data
partitioners behave very similar because of their identical nature.

This results claim for a data partitioning strategy that takes into account both the load
balancing factor and the affinity between data.

5.3.3 ReadOpt Optimization

In Section 4.4.2.1 we discussed an optimization that we called readOpt. This optimiza-
tion enables the system to perform some kind of caching when reading remote objects,

76

5. EVALUATION 5.3. Results

reducing the number of remote read operations.
To prove our intuition, we used the Vacation benchmark and executed it with two

implementations of the SCORe protocol - one with the readOpt optimization and one
without it. Figure 5.6 shows the result. Take into account that this benchmark measures
the execution time (lower is better).

We did not use the Red-Black Tree for this experiment because, as already stated, the
only partially replicated fields are the tree nodes’ integer values, and this optimization
will only be advantageous in cases where the partially replicated fields are objects that
have references to other objects.

 0

 5

 10

 15

 20

 25

1 2 4 8

Ex
ec

ut
io

n
tim

e
(s

)

Groups

JGroups, Adapted Vacation (8 Nodes, 4 Thrs, LDP, 10% write)

noReadOpt
readOpt

(a) Execution time.

 0

 1

 2

 3

 4

 5

 6

1 2 4 8

R
em

ot
e

R
ea

ds
 (%

)

Groups

JGroups, Adapted Vacation (8 Nodes, 4 Thrs, LDP, 10% write)

noReadOpt
readOpt

(b) Remote reads percentage.

Figure 5.6: Execution time and remote reads percentage on the Adapted Vacation bench-
mark (Cluster@DI).

As Figure 5.6b presents, this optimization indeed reduces the amount of remote read
operations. Naturally, as the number of groups grows the percentage of remote read
operations also grows, but without this optimization the percentage of remote read oper-
ations grows 3 times more than with the optimization. Figure 5.6a also shows the impact
of this optimization in the benchmark execution time, being that with the optimization,
the benchmark consistently performs better.

5.3.4 Partial Replication versus Full Replication

We think that it is important to compare the partial replication configuration with the full
replication configuration. Given that, next we present some experiments that compare
both configurations.

5.3.4.1 Read Transactions

Both configurations allow read-only transactions to commit without the need for a dis-
tributed validation. Hence it is interesting to see how they perform in a scenario with just
read-only transactions.

To this extent, we applied both configurations to the Red-Black Tree microbenchmark
parametrized with 0% write transactions. The result is shown in Figure 5.7.

77

5. EVALUATION 5.3. Results

 0

 200

 400

1 2 4 8

Tr
an

sa
ct

io
ns

 x
 1

03 /s
ec

on
d

Groups

JGroups, RBTree (8 Nodes, 4 Thrs, 0% write)

Full
Partial

Figure 5.7: System’s throughput with 100% read-only transactions on the Red-Black Tree
microbenchmark (Cluster@DI).

The partial replication configuration, when using one group, mimics full replication,
thus there are no remote read operations. Given that, we can see the overhead imposed
by the partial replication configuration when executing local read operations. the chart
shows that the throughput of the partial replication configuration is 4 times less when
compared with the throughput of the full replication configuration.

When the number of groups grows, the partial replication configuration requires re-
mote read operations (due to the distribution of the data) cutting the throughput in half.

5.3.4.2 Write Transactions

Typical scenarios also have write transactions, so we experimented both configurations
in such scenarios. First, we used the Red-Black Tree microbenchmark parametrized
with 10% write transactions. For the partial replication configuration we used the round
robin data partitioner. The result is depicted in Figure 5.8.

We can observe that the partial replication configuration’s throughput is very low
regarding its full replication counterpart. This can be justified with the simple reason
that all the write transactions modify the structure of the tree. Remember that the write
transactions in the Red-Black Tree microbenchmark insert or remove nodes from the tree
and those nodes are fully replicated. Given that, all the transactions that need distributed
validation (i.e., the write transactions) have to be validated by all the nodes in the system.
Thus, in this case, the use of partial replication reduces the overall performance of the
system.

Trying to observe the behaviour of the partial replication configuration with differ-
ent study cases, we also experimented with two other benchmarks, namely the Vacation
benchmark and TPC-W. These benchmarks’ transactions have a mixed behaviour that

78

5. EVALUATION 5.3. Results

 1

 10

 100

 1000

1 2 4 8

Tr
an

sa
ct

io
ns

 x
 1

02 /s
ec

on
d

Groups

JGroups, RBTree (8 Nodes, 4 Thrs, 10% write)

Full
Partial

Figure 5.8: System’s throughput with 10% write transactions on the Red-Black Tree mi-
crobenchmark (Cluster@DI).

involve both modifications to the data structures and to the partially replicated fields.
Figure 5.9 shows the result.

 0

 2

 4

 6

 8

 10

1 2 4 8

Ex
ec

ut
io

n
tim

e
(s

)

Groups

JGroups, Adapted Vacation (8 Nodes, 4 Thrs, 10% write)

Full
Partial

(a) Vacation.

 0

 400

 800

 1200

1 2 4 8

O
pe

rti
on

s/
se

co
nd

Groups

JGroups, TPC-W (8 Nodes, 2 Thrs, browsing mix)

Full
Partial

(b) TPC-W.

Figure 5.9: System’s throughput using mixed behaviour benchmarks (Cluster@DI).

With this mixed behaviour, we can observe that the partial replication configuration
still reduces the overall system’s performance, but with a smaller gap between them.
With the Vacation benchmark, in Figure 5.9a, the throughput of the partial replication
configuration is around half of the full replication configuration’s throughput. And with
TPC-W, in Figure 5.9b, the throughput of the partial replication configuration is around 2.6
times lower than the full replication configuration’s throughput. Thought it still cannot
outperform the full replication configuration in neither cases since during these experi-
ments, with the Vacation benchmark 90% of the transactions had to be validated by all
the nodes, and with TPC-W it dropped to around 85%, which still is too much.

To check if the partial replication configuration could take advantage of its distributed

79

5. EVALUATION 5.3. Results

and replicated nature, we modified the Red-Black Tree microbenchmark in order to have
write transactions that do not modify the structure of the tree and thus do not have to
be validated by all the system’s nodes. We named it Adapted Red-Black Tree version
2 microbenchmark, and write transactions just modify the values stored by the tree’s
nodes. The result is shown in Figure 5.10.

 6

 8

 10

 12

 14

 16

 18

1 2 4 8

Tr
an

sa
ct

io
ns

 x
 1

03 /s
ec

on
d

Groups

JGroups, Adapted RBTree v2 (8 Nodes, 4 Thrs, 10% write)

Full
Partial

Figure 5.10: System’s throughput with 10% write transactions on the Adapted Red-Black
Tree version 2 microbenchmark (Cluster@DI).

We can see that, in fact, with this modified benchmark, the partial replication config-
uration takes advantage of its distributed validation protocol. As the number of groups
grows, transactions have to be validated by less nodes allowing the system to scale. Nev-
ertheless, it still does not outperform the full replication configuration. We think this will
only be possible in a system with a reasonable amount of nodes, or in a scenario with a
higher percentage of write transactions (modifying only the partially replicated fields).

To put a part of this intuition to the test, we ran the same experiment as before with
higher percentages of write transactions (namely 50% and 80%), and the result is depicted
in Figure 5.11.

We can observe that as the number of groups grows, the system with the partial repli-
cation configuration scales and, in fact, it surpasses the full replication configuration,
even if just for a short difference. This result demonstrates that when the number of
groups grows, write transactions have to be validated by less nodes improving the sys-
tem’s overall performance. On the other hand, the full replication configuration, using
the TOB primitive, is somewhat limited by the latency when totally ordering messages.

To put the other part of out intuition to the test, we ran the same experiment as in
Figure 5.10 but with a larger number of nodes, namely 20 nodes. Figure 5.12 depicts the
result.

As we can see, in fact, in a system with a larger number of nodes, as the number

80

5. EVALUATION 5.3. Results

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8

Tr
an

sa
ct

io
ns

/s
ec

on
d

Groups

JGroups, Adapted RBTree v2 (8 Nodes, 4 Thrs, 50% write)

Full
Partial

(a) 50% write transactions.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

1 2 4 8

Tr
an

sa
ct

io
ns

/s
ec

on
d

Groups

JGroups, Adapted RBTree v2 (8 Nodes, 4 Thrs, 80% write)

Full
Partial

(b) 80% write transactions.

Figure 5.11: System’s throughput with higher percentages of write transactions on the
Adapted Red-Black Tree version 2 microbenchmark (Cluster@DI).

 5

 10

 15

 20

 25

 30

1 2 4 5 10 20

Tr
an

sa
ct

io
ns

 x
 1

03 /s
ec

on
d

Groups

JGroups, Adapted RedBTree v2 (20 Nodes, 1 Thr, 10% write)

Full
Partial

Figure 5.12: System’s throughput with 10% write transactions on the Adapted Red-Black
Tree version 2 microbenchmark (Supernova).

of groups grows, the partial replication configuration starts to surpass the full replica-
tion configuration’s throughput (for a large number of groups). We can justify this, once
again, with the TOB primitive used by the full replication configuration. In the partial
replication configuration, as the number of groups grows each write transaction needs to
be validated by a decreasing number of nodes, having lower latencies in the distributed
voting compared with the full replication configuration’s total ordering of messages.

Workload distribution. During these experiments we also measured the work done by
each node and by each group in an attempt to verify if all the nodes/groups contribute
with the same amount of work to the system’s overall throughput. The result can be seen
in Figure 5.13. These measures were taken during the execution of the Red-Black Tree
microbenchmark (as seen in Figure 5.8), but for all the other benchmarks the results are

81

5. EVALUATION 5.3. Results

similar. In Figure 5.13a each color represents one replica, and in Figure 5.13b each color
represent one group.

 0

 20

 40

 60

 80

 100

1 2 4 8 Full

T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Groups

JGroups, RBTree (8 Nodes, 4 Thrs, 10% write)

(a) Per node.

 0

 20

 40

 60

 80

 100

1 2 4 8

T
ra

n
s
a
c
ti
o
n
s
 (

%
 f
ro

m
 t
o
ta

l)

Groups

JGroups, RBTree (8 Nodes, 4 Thrs, RRDP, 10% write)

(b) Per group.

Figure 5.13: Execution breakdown on the Red-Black Tree microbenchmark (Cluster@DI).

As we can see every node (Figure5.13a) and every group (Figure 5.13b) contribute
roughly with the same amount of work for the system’s overall throughput, thus SCORe
ordering mechanism achieves fairness. The same cannot be said when using the full repli-
cation configuration that uses JGroups’ implementation of the TOB communication prim-
itive. JGroups provides non-uniform total order using a fixed sequencer (Section 5.1.1)
known for its unfairness regarding message ordering, where the sequencer has the upper
hand having its messages consistently ordered before everyone else’s, hence dominating
the system.

Thus, the partial replication configuration achieves better workload distribution. On
the other hand, our intuition says that, in the full replication configuration, the sequencer
will probably become the main bottleneck of the system.

5.3.4.3 Time Breakdown

As seen it the previous experiments, the partial replication configuration presents a great
overhead regarding the full replication configuration. In order to verify its source, we
display the main differences between them in terms of the execution time of some parts
of a transaction’s execution and validation.

To that extent, we compare the execution of the Red-Black Tree microbenchmark us-
ing both configurations. The used partial replication configuration for this experiment
was parametrized with the round robin data partitioner and with a replication factor of 2
(4 groups, in this case). The result is shown in Figure 5.14.

Right away, we can see that the partial replication configuration has longer execution
times for the different procedures. The labels in the x-axis have the following meaning:

Val Is the time spent validating transactions (i.e., acquiring locks and validating the read
set);

82

5. EVALUATION 5.3. Results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Val Ser LR Wait RR

T
im

e
 (

m
s
)

Process

JGroups, RBTree (8 Nodes, 4 Thrs, 10% write)

Full
Partial

Figure 5.14: Execution times breakdown on the Red-Black Tree microbenchmark (Clus-
ter@DI).

Ser Is the time spent serializing messages to be sent through the network;

LR Is the time spent executing a local read operation;

Wait has different meanings for the two configurations. For the full replication configu-
ration, it means the time waiting between the sending and the reception of a totally
ordered message. For the partial configuration configuration, it means the time
waiting between the sending of a prepare message and the reception of the last
vote from the participants; and

RR Is the time spent executing a remote read operation.

Validation. The validation phase in the partial replication configuration takes slightly
longer that in the full replication configuration, since it has more steps. The TL2 vali-
dation locks the write set and checks the validity of the read set. The SCORe validation
acquires exclusive and shared locks for both the write and read sets, respectively, and it
checks the validity of the read set.

Serialization. The serialization of messages also takes slightly longer that in the full
replication configuration. This happens because, besides the objects, both the transac-
tional and distribution metadata, in the partial replication configuration, store substan-
tially more information that the ones used by the full replication configuration.

Local Read. The local read operations executed by the partial replication configuration
take much longer that the ones executed by the full replication configuration. When, with
the full replication configuration, the local read operations take around one microsecond,

83

5. EVALUATION 5.4. Final Remarks

with the partial replication configuration take around 80 microseconds. This has to do
with the increased complexity of the read operations done by SCORe. The TL2 read
operation just checks a logical clock and reads a memory location. On the other hand, the
SCORe read operation checks the locality of the data, checks a logical clock, may have
to wait on a condition, and has to access the versions list. More over, the framework’s
architecture imposes an indirection that is not observed in the TL2 read operations. This
indirection is depicted in Figure 5.15.

Application

STM Algorithm

readTx

(a) TL2.

Application

STM Algorithm

Distributed Protocol

onRead

Remote Read

Local Read

readTx

(b) SCORe.

Figure 5.15: Read operation done by TL2 and by SCORe.

When using the TL2 algorithm (Figure 5.15a), applications execute a transactional
read operation directly to the STM algorithm and the algorithm responds back, directly.
But when using SCORe (Figure 5.15b), since it is the distributed protocol that has the
power to check the locality of the data, the algorithm is forced to request the distributed
protocol to execute the read operation.

Waiting. The full replication configuration uses a TOB communication primitive to to-
tally order messages. This imposes some latency in the messages delivery. The partial
replication configuration uses point-to-point communication, but it has to wait for the
votes of all the participants. Usually, this imposes a larger latency compared with the
TOB primitive (when waiting for the votes of many nodes).

Remote Read. Obviously, the full replication configuration does not execute remote
read operations. But this is inherent to the partial replication configuration and it imposes
a high latency in those read operations (around 80 milliseconds).

5.4 Final Remarks

Regarding the system’s memory consumption using the partial replication configuration,
we observed that it behaves as expected, consuming less memory per node than the

84

5. EVALUATION 5.5. Summary

full replication configuration. This only happens if the partially replicated data is of
considerable size.

We demonstrated that the different data partitioners have a considerable impact on
the system’s overall performance, and the appropriate use of them can bring a good
overall improvement. Thus, the proper data partitioner depends on the applications’
behaviour.

The readOpt optimization works as expected, reducing the number of remote read
operations performed by the system, when using the partial replication configuration,
thus improving the system’s overall performance.

When comparing both configuration, we have to take into account that those config-
urations have considerably different types of protocols and STM algorithms. The multi
version algorithm used by SCORe is much more complex than TL2 and the non-voting
certification protocol is much simpler (requiring only one communication step) than the
distributed protocol used by SCORe (based in 2PC). Those differences are evident in Sec-
tion 5.3.4.3. The partial replication configuration can only take advantage of its protocol
when the applications have write transactions that modify the partially replicated data.
When transactions modify fully replicated data, the partial replication configuration will
always perform poorly, since it requires three communication steps to confirm such trans-
actions. We also observed that the partial replication configuration distributed the work-
load among the system’s nodes in a fair manner, unlike the full replication configuration
where the sequencer dominates the system.

A more general remark related to the advantage of using partial replication. It is a
given that partial replication can be advantageous in scenarios where there is a small
amount of transactions that modify fully replicated data (usually the data structures).
Given that, when using partial replication, partially replicate the data structures is a bad
idea, we opt by fully replicating them. In this case, if the relative amount of operations
that modify the data structures is too large, the overhead of the voting protocol, like
SCORe, will be too much.

These results call for some sort of hybrid protocol capable of seamlessly combining
both full and partial data replication in the same system.

5.5 Summary

In this chapter, we presented the results of an experimental evaluation of the implemen-
tation of a partially replicated STM described in Section 4.4.

We started by describing the test environment used for this evaluation in Section 5.1.
Next, in Section 5.2, we characterized the used benchmarks with the corresponding para-
metrizations. In Section 5.3, we present and analyse the obtained results. We finalize this
chapter, with Section 5.4, making the final remarks resulting from the results’ analysis.

85

5. EVALUATION 5.5. Summary

86

6
Conclusion

We now present our main conclusions and introduce interesting directions for future
work.

6.1 Concluding Remarks

Despite of initially being studied in the context of chip-level multiprocessing, the benefits
of STM over traditional concurrency control methods make it an interesting model for
distributed concurrency control. However, the existing DSTM frameworks are tied to a
specific distributed memory model and provide an intrusive interface to applications.

This thesis addresses the problem of implementing a modular DSTM system for a
general-purpose programming language providing partial data replication as a possible
distributed memory model, and we claim that it is possible to combine both full and
partial data replication in a DSTM system.

We propose an extension to the TribuDSTM framework to support partial data repli-
cation. This extension keeps the framework backwards compatible, since it can still be
used with the previous implemented full replication configuration, by parametrization
of the system when executing the target application. It still allows the implementation of
different distributed memory models and the associated protocols to support distributed
transactions. We also maintain the programming model as less intrusive as possible. This
paves the way of for the study of the impact of different distributed memory models in
different contexts.

The provided programming model requires only small modifications to the applica-
tions, presenting sufficient expressiveness to develop all kinds of applications. At least
the benchmarks used in the evaluation were relatively easy to adapt, and following the

87

6. CONCLUSION 6.2. Future Work

recommended usage presented previously, the application of the @Partial annotation was
confined to the data structures.

Using our proposed framework, we provide an implementation of a partially repli-
cated STM which resorts to the SCORe protocol to commit distributed transactions. We
evaluated the prototype implementation under different workloads using well known
benchmarks.

From our evaluation, we are able to draw some initial conclusions on the applicability
of partial replication in the specific context of TM for general-purpose programming lan-
guages. First of all, we conclude that it must not be used to replicate data structures. The
overhead of remote read operations when traversing a partially replicated data structure
would impose a great performance penalty. Accordingly, we restricted its use to the con-
tents of such data structure and, even so, the system only reduces memory consumption
when the partially replicated data is of a considerable size (e.g., the @Partial annotation
applied to an integer field would have little effect).

In this context, both partial and full replication coexist. However, some constraints
must be applied for the system to deliver good performance, given that the cost of con-
firming transactions that operate on fully replicated data, in a partial replication configu-
ration, is substantially higher then in a full replication configuration. This is based on the
fact that the protocol used in the partial replication configuration to confirm transactions
requires three communication steps (since it is based in 2PC), while the protocol used in
the full replication configuration requires only one step (it uses a TOB communication
primitive). Our particular implementation of a partially replicated STM takes advan-
tage of the partitioning of the nodes into groups to minimize this impact and reduce the
latency when confirming transactions. In fact, as the system scales, we can reduce the
number of nodes that confirm transactions limiting the data’s replication factor.

Our evaluation also gave us some indicators that partial replication can be advanta-
geous in certain contexts, e.g., in applications where there is a small amount of transac-
tions that modify fully replicated data. This is based on the fact that the majority of fully
replicated STMs make use of TOB communication primitives to totally order messages,
being these their main bottleneck.

In conclusion, we were able to sustain our claim and, as such, the implemented pro-
totype effectively combines partial and full replication in a DSTM system. The presented
DSTM framework allows the easy implementation of replicated STMs using both full and
partial data replication, and it provides a non-intrusive interface to applications.

6.2 Future Work

Interesting directions for future work include:

88

6. CONCLUSION

• Implementation of the state of the art algorithms of partially replicated STM dis-
tributed commit and memory consistency (presented in Section 2.3.3) on our frame-
work, and subsequent evaluation and comparison;

• Implementation of group hierarchies, trying to take advantage of data locality, and
possibly trying to apply this STM model to cloud environments;

• Under a partially replicated STM, support data and thread/transaction migration
considering the affinity between data items and threads/transactions;

• The design and implementation of algorithms allowing the seamless combination
of partial and full data replication strategies presents a challenging and technical
problem that can be investigated;

• Support different replication factors for different data items, giving the possibility
of creating “data hotspots”, where the most requested data items dynamically raise
their replication factor;

• A solution with partially replicated arrays, i.e., where arrays would be partitioned
among various groups, would present a challenging and interesting problem that
could be investigated; and

• The study of the impact of different serialization libraries (like kryo [Kry] or fst [Fst])
in the serialization time and in the communication.

89

6. CONCLUSION

90

Bibliography

[Uui] A Universally Unique IDentifier (UUID) URN Namespace. http://www.ietf.
org/rfc/rfc4122.txt. May 2013.

[Aba+08] M. Abadi, A. Birrell, T. Harris, and M. Isard. “Semantics of transactional
memory and automatic mutual exclusion”. In: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
POPL ’08. San Francisco, California, USA: ACM, 2008, pp. 63–74. ISBN: 978-
1-59593-689-9. DOI: 10.1145/1328438.1328449. URL: http://doi.
acm.org/10.1145/1328438.1328449.

[Agr+97] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. “Exploiting Atomic Broad-
cast in Replicated Databases (Extended Abstract)”. In: Proceedings of the Third
International Euro-Par Conference on Parallel Processing. Euro-Par ’97. London,
UK, UK: Springer-Verlag, 1997, pp. 496–503. ISBN: 3-540-63440-1. URL: http:
//dl.acm.org/citation.cfm?id=646662.699395.

[Alo97] G. Alonso. “Partial Database Replication and Group Communication Prim-
itives (Extended Abstract)”. In: in Proceedings of the 2 nd European Research
Seminar on Advances in Distributed Systems (ERSADS’97). 1997, pp. 171–176.

[AD76] P. A. Alsberg and J. D. Day. “A principle for resilient sharing of distributed
resources”. In: Proceedings of the 2nd international conference on Software engi-
neering. ICSE ’76. San Francisco, California, United States: IEEE Computer
Society Press, 1976, pp. 562–570. URL: http://dl.acm.org/citation.
cfm?id=800253.807732.

[Ami+00] Y. Amir, C. Danilov, and S. Stanton. “A low latency, loss tolerant architecture
and protocol for wide area group communication”. In: Proceedings of the In-
ternational Conference on Dependable Systems and Networks. 2000, pp. 327–336.
DOI: 10.1109/ICDSN.2000.857557.

[Bad+06] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici.
“Grid Computing: Software Environments and Tools”. In: Springer-Verlag,

91

http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt
http://dx.doi.org/10.1145/1328438.1328449
http://doi.acm.org/10.1145/1328438.1328449
http://doi.acm.org/10.1145/1328438.1328449
http://dl.acm.org/citation.cfm?id=646662.699395
http://dl.acm.org/citation.cfm?id=646662.699395
http://dl.acm.org/citation.cfm?id=800253.807732
http://dl.acm.org/citation.cfm?id=800253.807732
http://dx.doi.org/10.1109/ICDSN.2000.857557

BIBLIOGRAPHY

2006. Chap. Programming, Deploying, Composing, for the Grid. URL: http:
/ / www - sop . inria . fr / oasis / proactive / userfiles / file /

papers/ProgrammingComposingDeploying.pdf.

[Ban98] B. Ban. “Design and implementation of a reliable group communication toolkit
for java”. In: Cornell University (1998).

[Ber+87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and re-
covery in database systems. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1987. ISBN: 0-201-10715-5.

[Blo70] B. H. Bloom. “Space/time trade-offs in hash coding with allowable errors”.
In: Commun. ACM 13.7 (July 1970), pp. 422–426. ISSN: 0001-0782. DOI: 10.
1145 / 362686 . 362692. URL: http : / / doi . acm . org / 10 . 1145 /
362686.362692.

[Blu+06] C. Blundell, E. Lewis, and M. Martin. “Subtleties of Transactional Memory
Atomicity Semantics”. In: IEEE Comput. Archit. Lett. 5.2 (July 2006), pp. 17–
17. ISSN: 1556-6056. DOI: 10.1109/L-CA.2006.18. URL: http://dx.
doi.org/10.1109/L-CA.2006.18.

[Boc+08] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. “Software transactional
memory for large scale clusters”. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming. PPoPP ’08. Salt
Lake City, UT, USA: ACM, 2008, pp. 247–258. ISBN: 978-1-59593-795-7. DOI:
10.1145/1345206.1345242. URL: http://doi.acm.org/10.1145/
1345206.1345242.

[BM03] A. Broder and M. Mitzenmacher. “Network Applications of Bloom Filters: A
Survey”. In: Internet Mathematics. 2003, pp. 636–646.

[Bud+93] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. “Distributed sys-
tems (2nd Ed.)” In: ed. by S. Mullender. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1993. Chap. The primary-backup approach, pp. 199–
216. ISBN: 0-201-62427-3. URL: http://dl.acm.org/citation.cfm?
id=302430.302438.

[CRS06] J. Cachopo and A. Rito-Silva. “Versioned boxes as the basis for memory
transactions”. In: Science of Computer Programming 63.2 (2006), pp. 172 –185.
ISSN: 0167-6423. DOI: http://dx.doi.org/10.1016/j.scico.2006.
05.009. URL: http://www.sciencedirect.com/science/article/
pii/S0167642306001171.

[Car+10] N. Carvalho, P. Romano, and L. Rodrigues. “Asynchronous lease-based repli-
cation of software transactional memory”. In: Proceedings of the ACM/IFIP/USENIX
11th International Conference on Middleware. Middleware ’10. Bangalore, In-
dia: Springer-Verlag, 2010, pp. 376–396. ISBN: 978-3-642-16954-0. URL: http:
//dl.acm.org/citation.cfm?id=2023718.2023744.

92

http://www-sop.inria.fr/oasis/proactive/userfiles/file/papers/ProgrammingComposingDeploying.pdf
http://www-sop.inria.fr/oasis/proactive/userfiles/file/papers/ProgrammingComposingDeploying.pdf
http://www-sop.inria.fr/oasis/proactive/userfiles/file/papers/ProgrammingComposingDeploying.pdf
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1145/1345206.1345242
http://doi.acm.org/10.1145/1345206.1345242
http://doi.acm.org/10.1145/1345206.1345242
http://dl.acm.org/citation.cfm?id=302430.302438
http://dl.acm.org/citation.cfm?id=302430.302438
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2006.05.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2006.05.009
http://www.sciencedirect.com/science/article/pii/S0167642306001171
http://www.sciencedirect.com/science/article/pii/S0167642306001171
http://dl.acm.org/citation.cfm?id=2023718.2023744
http://dl.acm.org/citation.cfm?id=2023718.2023744

BIBLIOGRAPHY

[Car+11a] N. Carvalho, P. Romano, and L. Rodrigues. “A Generic Framework for Repli-
cated Software Transactional Memories”. In: Proceedings of the 2011 IEEE 10th
International Symposium on Network Computing and Applications. NCA ’11. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 271–274. ISBN: 978-0-
7695-4489-2. DOI: 10.1109/NCA.2011.45. URL: http://dx.doi.org/
10.1109/NCA.2011.45.

[Car+11b] N. Carvalho, P. Romano, and L. Rodrigues. “SCert: Speculative certification
in replicated software transactional memories”. In: Proceedings of the 4th An-
nual International Conference on Systems and Storage. SYSTOR ’11. Haifa, Israel:
ACM, 2011, 10:1–10:13. ISBN: 978-1-4503-0773-4. DOI: 10.1145/1987816.
1987830. URL: http://doi.acm.org/10.1145/1987816.1987830.

[CT96] T. D. Chandra and S. Toueg. “Unreliable failure detectors for reliable dis-
tributed systems”. In: J. ACM 43.2 (Mar. 1996), pp. 225–267. ISSN: 0004-5411.
DOI: 10.1145/226643.226647. URL: http://doi.acm.org/10.
1145/226643.226647.

[Cho+01] G. V. Chockler, I. Keidar, and R. Vitenberg. “Group communication speci-
fications: a comprehensive study”. In: ACM Comput. Surv. 33.4 (Dec. 2001),
pp. 427–469. ISSN: 0360-0300. DOI: 10.1145/503112.503113. URL: http:
//doi.acm.org/10.1145/503112.503113.

[Cou+09] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. “D2STM: Depend-
able Distributed Software Transactional Memory”. In: Proceedings of the 2009
15th IEEE Pacific Rim International Symposium on Dependable Computing. PRDC
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 307–313. ISBN:
978-0-7695-3849-5. DOI: 10.1109/PRDC.2009.55. URL: http://dx.doi.
org/10.1109/PRDC.2009.55.

[Cou+11] M. Couceiro, P. Romano, and L. Rodrigues. “PolyCert: polymorphic self-
optimizing replication for in-memory transactional grids”. In: Proceedings of
the 12th ACM/IFIP/USENIX international conference on Middleware. Middle-
ware’11. Lisbon, Portugal: Springer-Verlag, 2011, pp. 309–328. ISBN: 978-3-
642-25820-6. DOI: 10.1007/978- 3- 642- 25821- 3_16. URL: http:
//dx.doi.org/10.1007/978-3-642-25821-3_16.

[Cou+05] C. Coulon, E. Pacitti, and P. Valduriez. “Consistency Management for Partial
Replication in a High Performance Database Cluster”. In: Proceedings of the
11th International Conference on Parallel and Distributed Systems - Volume 01. IC-
PADS ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 809–815.
ISBN: 0-7695-2281-5-01. DOI: 10.1109/ICPADS.2005.114. URL: http:
//dx.doi.org/10.1109/ICPADS.2005.114.

93

http://dx.doi.org/10.1109/NCA.2011.45
http://dx.doi.org/10.1109/NCA.2011.45
http://dx.doi.org/10.1109/NCA.2011.45
http://dx.doi.org/10.1145/1987816.1987830
http://dx.doi.org/10.1145/1987816.1987830
http://doi.acm.org/10.1145/1987816.1987830
http://dx.doi.org/10.1145/226643.226647
http://doi.acm.org/10.1145/226643.226647
http://doi.acm.org/10.1145/226643.226647
http://dx.doi.org/10.1145/503112.503113
http://doi.acm.org/10.1145/503112.503113
http://doi.acm.org/10.1145/503112.503113
http://dx.doi.org/10.1109/PRDC.2009.55
http://dx.doi.org/10.1109/PRDC.2009.55
http://dx.doi.org/10.1109/PRDC.2009.55
http://dx.doi.org/10.1007/978-3-642-25821-3_16
http://dx.doi.org/10.1007/978-3-642-25821-3_16
http://dx.doi.org/10.1007/978-3-642-25821-3_16
http://dx.doi.org/10.1109/ICPADS.2005.114
http://dx.doi.org/10.1109/ICPADS.2005.114
http://dx.doi.org/10.1109/ICPADS.2005.114

BIBLIOGRAPHY

[Déf+04] X. Défago, A. Schiper, and P. Urbán. “Total order broadcast and multicast al-
gorithms: Taxonomy and survey”. In: ACM Comput. Surv. 36.4 (Dec. 2004),
pp. 372–421. ISSN: 0360-0300. DOI: 10.1145/1041680.1041682. URL:
http://doi.acm.org/10.1145/1041680.1041682.

[Dia+11] R. J. Dias, J. M. Lourenço, and N. Preguiça. “Efficient and Correct Transac-
tional Memory Programs Combining Snapshot Isolation and Static Analy-
sis”. In: Proceedings of the 3rd USENIX Conference on Hot Topics in Parallelism
(HotPar’11). HotPar’11. Usenix Association. Usenix Association, May 2011.

[Dia+12] R. J. Dias, T. M. Vale, and J. M. Lourenço. “Efficient support for in-place meta-
data in transactional memory”. In: Proceedings of the 18th international con-
ference on Parallel Processing. Euro-Par’12. Rhodes Island, Greece: Springer-
Verlag, 2012, pp. 589–600. ISBN: 978-3-642-32819-0. DOI: 10.1007/978-3-
642-32820-6_59. URL: http://dx.doi.org/10.1007/978-3-642-
32820-6_59.

[Dia+13] R. J. Dias, T. M. Vale, and J. M. Lourenço. “Efficient support for in-place meta-
data in Java software transactional memory”. In: Concurrency and Computa-
tion: Practice and Experience 25.17 (Dec. 2013), pp. 2394–2411. ISSN: 1532-0634.
DOI: 10.1002/cpe.3098. URL: http://dx.doi.org/10.1002/cpe.
3098.

[Dic+06] D. Dice, O. Shalev, and N. Shavit. “Transactional locking II”. In: international
conference on Distributed Computing. 2006, pp. 194–208. ISBN: 3-540-44624-9,
978-3-540-44624-8. DOI: 10.1007/11864219_14. URL: http://dx.doi.
org/10.1007/11864219_14.

[Esw+76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. “The notions of con-
sistency and predicate locks in a database system”. In: Commun. ACM 19.11
(Nov. 1976), pp. 624–633. ISSN: 0001-0782. DOI: 10.1145/360363.360369.
URL: http://doi.acm.org/10.1145/360363.360369.

[Fst] fst - fast serialization for Java. http://code.google.com/p/fast-
serialization/. 2013.

[Gam+94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994, p. 416.
ISBN: 0201633612.

[Gra78] J. Gray. “Notes on Data Base Operating Systems”. In: Operating Systems, An
Advanced Course. London, UK, UK: Springer-Verlag, 1978, pp. 393–481. ISBN:
3-540-08755-9. URL: http://dl.acm.org/citation.cfm?id=647433.
723863.

[GR92] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992. ISBN: 1558601902.

94

http://dx.doi.org/10.1145/1041680.1041682
http://doi.acm.org/10.1145/1041680.1041682
http://dx.doi.org/10.1007/978-3-642-32820-6_59
http://dx.doi.org/10.1007/978-3-642-32820-6_59
http://dx.doi.org/10.1007/978-3-642-32820-6_59
http://dx.doi.org/10.1007/978-3-642-32820-6_59
http://dx.doi.org/10.1002/cpe.3098
http://dx.doi.org/10.1002/cpe.3098
http://dx.doi.org/10.1002/cpe.3098
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1145/360363.360369
http://doi.acm.org/10.1145/360363.360369
http://code.google.com/p/fast-serialization/
http://code.google.com/p/fast-serialization/
http://dl.acm.org/citation.cfm?id=647433.723863
http://dl.acm.org/citation.cfm?id=647433.723863

BIBLIOGRAPHY

[GK08] R. Guerraoui and M. Kapalka. “On the correctness of transactional memory”.
In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and prac-
tice of parallel programming. PPoPP ’08. Salt Lake City, UT, USA: ACM, 2008,
pp. 175–184. ISBN: 978-1-59593-795-7. DOI: 10.1145/1345206.1345233.
URL: http://doi.acm.org/10.1145/1345206.1345233.

[HR83] T. Haerder and A. Reuter. “Principles of transaction-oriented database recov-
ery”. In: ACM Comput. Surv. 15.4 (Dec. 1983), pp. 287–317. ISSN: 0360-0300.
DOI: 10.1145/289.291. URL: http://doi.acm.org/10.1145/289.
291.

[HP86] R. Hansdah and L. Patnaik. “Update serializability in locking”. In: ICDT ’86.
Ed. by G. Ausiello and P. Atzeni. Vol. 243. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 1986, pp. 171–185. ISBN: 978-3-540-17187-4.
DOI: 10.1007/3-540-17187-8_36. URL: http://dx.doi.org/10.
1007/3-540-17187-8_36.

[Har+10] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. 2nd. Mor-
gan and Claypool Publishers, 2010. ISBN: 1608452352, 9781608452354.

[HM93] M. Herlihy and J. E. B. Moss. “Transactional memory: architectural support
for lock-free data structures”. In: SIGARCH Comput. Archit. News 21.2 (May
1993), pp. 289–300. ISSN: 0163-5964. DOI: 10.1145/173682.165164. URL:
http://doi.acm.org/10.1145/173682.165164.

[Her+06] M. Herlihy, V. Luchangco, and M. Moir. “A flexible framework for imple-
menting software transactional memory”. In: Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications. OOPSLA ’06. Portland, Oregon, USA: ACM, 2006, pp. 253–
262. ISBN: 1-59593-348-4. DOI: 10.1145/1167473.1167495. URL: http:
//doi.acm.org/10.1145/1167473.1167495.

[HW90] M. P. Herlihy and J. M. Wing. “Linearizability: a correctness condition for
concurrent objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (July 1990), pp. 463–
492. ISSN: 0164-0925. DOI: 10.1145/78969.78972. URL: http://doi.
acm.org/10.1145/78969.78972.

[KA98] B. Kemme and G. Alonso. “A suite of database replication protocols based on
group communication primitives”. In: Distributed Computing Systems, 1998.
Proceedings. 18th International Conference on. May 1998, pp. 156–163. DOI: 10.
1109/ICDCS.1998.679498.

[Kor+10] G. Korland, N. Shavit, and P. Felber. “Deuce: Noninvasive software transac-
tional memory in Java”. In: Transactions on HiPEAC 5.2 (2010).

95

http://dx.doi.org/10.1145/1345206.1345233
http://doi.acm.org/10.1145/1345206.1345233
http://dx.doi.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291
http://dx.doi.org/10.1007/3-540-17187-8_36
http://dx.doi.org/10.1007/3-540-17187-8_36
http://dx.doi.org/10.1007/3-540-17187-8_36
http://dx.doi.org/10.1145/173682.165164
http://doi.acm.org/10.1145/173682.165164
http://dx.doi.org/10.1145/1167473.1167495
http://doi.acm.org/10.1145/1167473.1167495
http://doi.acm.org/10.1145/1167473.1167495
http://dx.doi.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://dx.doi.org/10.1109/ICDCS.1998.679498
http://dx.doi.org/10.1109/ICDCS.1998.679498

BIBLIOGRAPHY

[Kot+08] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham, and I. Watson.
“DiSTM: A Software Transactional Memory Framework for Clusters”. In:
Proceedings of the 2008 37th International Conference on Parallel Processing. ICPP
’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 51–58. ISBN:
978-0-7695-3374-2. DOI: 10.1109/ICPP.2008.59. URL: http://dx.
doi.org/10.1109/ICPP.2008.59.

[Kry] kryo - Fast, efficient Java serialization and cloning. http://code.google.
com/p/kryo/. 2013.

[LS96] R. G. Lavender and D. C. Schmidt. “Pattern languages of program design 2”.
In: ed. by J. M. Vlissides, J. O. Coplien, and N. L. Kerth. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1996. Chap. Active object: an
object behavioral pattern for concurrent programming, pp. 483–499. ISBN: 0-
201-895277. URL: http://dl.acm.org/citation.cfm?id=231958.
232967.

[Lom77] D. B. Lomet. “Process structuring, synchronization, and recovery using atomic
actions”. In: SIGSOFT Softw. Eng. Notes 2.2 (Mar. 1977), pp. 128–137. ISSN:
0163-5948. DOI: 10.1145/390019.808319. URL: http://doi.acm.
org/10.1145/390019.808319.

[Man+06] K. Manassiev, M. Mihailescu, and C. Amza. “Exploiting distributed version
concurrency in a transactional memory cluster”. In: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming.
PPoPP ’06. New York, New York, USA: ACM, 2006, pp. 198–208. ISBN: 1-
59593-189-9. DOI: 10.1145/1122971.1123002. URL: http://doi.acm.
org/10.1145/1122971.1123002.

[Min+08] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. “STAMP: Stanford
Transactional Applications for MultiProcessing”. In: IEEE International Sym-
posium on Workload Characterization. 2008, pp. 35–46. DOI: 10.1109/IISWC.
2008.4636089.

[Mir+01] H. Miranda, A. Pinto, and L. Rodrigues. “Appia, a flexible protocol kernel
supporting multiple coordinated channels”. In: Proceeding of the 21st Inter-
national Conference on Distributed Computing Systems. 2001, pp. 707–710. DOI:
10.1109/ICDSC.2001.919005.

[MG08] K. F. Moore and D. Grossman. “High-level small-step operational semantics
for transactions”. In: Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. POPL ’08. San Francisco,
California, USA: ACM, 2008, pp. 51–62. ISBN: 978-1-59593-689-9. DOI: 10.
1145/1328438.1328448. URL: http://doi.acm.org/10.1145/
1328438.1328448.

96

http://dx.doi.org/10.1109/ICPP.2008.59
http://dx.doi.org/10.1109/ICPP.2008.59
http://dx.doi.org/10.1109/ICPP.2008.59
http://code.google.com/p/kryo/
http://code.google.com/p/kryo/
http://dl.acm.org/citation.cfm?id=231958.232967
http://dl.acm.org/citation.cfm?id=231958.232967
http://dx.doi.org/10.1145/390019.808319
http://doi.acm.org/10.1145/390019.808319
http://doi.acm.org/10.1145/390019.808319
http://dx.doi.org/10.1145/1122971.1123002
http://doi.acm.org/10.1145/1122971.1123002
http://doi.acm.org/10.1145/1122971.1123002
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1109/ICDSC.2001.919005
http://dx.doi.org/10.1145/1328438.1328448
http://dx.doi.org/10.1145/1328438.1328448
http://doi.acm.org/10.1145/1328438.1328448
http://doi.acm.org/10.1145/1328438.1328448

BIBLIOGRAPHY

[Ora13] Oracle. The java.lang.instrument package. http://docs.oracle.
com/javase/6/docs/api/java/lang/instrument/package-

summary.html. May 2013.

[OW213] OW2 Consortium. ASM. http://asm.ow2.org. May 2013.

[Pal+10] R. Palmieri, F. Quaglia, and P. Romano. “AGGRO: Boosting STM Replica-
tion via Aggressively Optimistic Transaction Processing”. In: Proceedings of
the 2010 Ninth IEEE International Symposium on Network Computing and Ap-
plications. NCA ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 20–27. ISBN: 978-0-7695-4118-1. DOI: 10.1109/NCA.2010.10. URL:
http://dx.doi.org/10.1109/NCA.2010.10.

[PS98] F. Pedone and A. Schiper. “Optimistic Atomic Broadcast”. In: Distributed
Computing. Ed. by S. Kutten. Vol. 1499. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1998, pp. 318–332. ISBN: 978-3-540-65066-9. DOI:
10.1007/BFb0056492. URL: http://dx.doi.org/10.1007/BFb0056492.

[Pel+12a] S. Peluso, P. Romano, and F. Quaglia. “SCORe: A Scalable One-Copy Serializ-
able Partial Replication Protocol”. In: Middleware 2012. Ed. by P. Narasimhan
and P. Triantafillou. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2012, pp. 456–475. ISBN: 978-3-642-35169-3. DOI: 10.1007/978-3-
642-35170-9_23. URL: http://dx.doi.org/10.1007/978-3-642-
35170-9_23.

[Pel+12b] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. “When Scala-
bility Meets Consistency: Genuine Multiversion Update-Serializable Partial
Data Replication”. In: Proceedings of the 2012 IEEE 32nd International Confer-
ence on Distributed Computing Systems. ICDCS ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 455–465. ISBN: 978-0-7695-4685-8. DOI: 10.
1109/ICDCS.2012.55. URL: http://dx.doi.org/10.1109/ICDCS.
2012.55.

[Red13] Red Hat. JBoss Application Server. http://www.jboss.org/jbossas.
2013.

[Rie+06] T. Riegel, C. Fetzer, and P. Felber. “Snapshot isolation for software transac-
tional memory”. In: Proceedings of the first ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Hardware Support for Transactional Computing. TRANS-
ACT ’06. Ottowa, Ontario, Canada: ACM, 2006.

[Rod+06] L. Rodrigues, J. Mocito, and N. Carvalho. “From spontaneous total order
to uniform total order: different degrees of optimistic delivery”. In: Proceed-
ings of the 2006 ACM symposium on Applied computing. SAC ’06. Dijon, France:
ACM, 2006, pp. 723–727. ISBN: 1-59593-108-2. DOI: 10.1145/1141277.
1141441. URL: http://doi.acm.org/10.1145/1141277.1141441.

97

http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://asm.ow2.org
http://dx.doi.org/10.1109/NCA.2010.10
http://dx.doi.org/10.1109/NCA.2010.10
http://dx.doi.org/10.1007/BFb0056492
http://dx.doi.org/10.1007/BFb0056492
http://dx.doi.org/10.1007/978-3-642-35170-9_23
http://dx.doi.org/10.1007/978-3-642-35170-9_23
http://dx.doi.org/10.1007/978-3-642-35170-9_23
http://dx.doi.org/10.1007/978-3-642-35170-9_23
http://dx.doi.org/10.1109/ICDCS.2012.55
http://dx.doi.org/10.1109/ICDCS.2012.55
http://dx.doi.org/10.1109/ICDCS.2012.55
http://dx.doi.org/10.1109/ICDCS.2012.55
http://www.jboss.org/jbossas
http://dx.doi.org/10.1145/1141277.1141441
http://dx.doi.org/10.1145/1141277.1141441
http://doi.acm.org/10.1145/1141277.1141441

BIBLIOGRAPHY

[Rom+08] P. Romano, N. Carvalho, and L. Rodrigues. “Towards distributed software
transactional memory systems”. In: Proceedings of the 2nd Workshop on Large-
Scale Distributed Systems and Middleware. LADIS ’08. Yorktown Heights, New
York: ACM, 2008, 4:1–4:4. ISBN: 978-1-60558-296-2. DOI: 10.1145/1529974.
1529980. URL: http://doi.acm.org/10.1145/1529974.1529980.

[Rui11] P. Ruivo. “Replicação Parcial para Sistemas de Memória Transaccional por
Software”. MA thesis. Instituto Superior Técnico, Universidade Técnica de
Lisboa, 2011.

[SR11] M. M. Saad and B. Ravindran. “HyFlow: a high performance distributed
software transactional memory framework”. In: Proceedings of the 20th inter-
national symposium on High performance distributed computing. HPDC ’11. San
Jose, California, USA: ACM, 2011, pp. 265–266. ISBN: 978-1-4503-0552-5. DOI:
10.1145/1996130.1996167. URL: http://doi.acm.org/10.1145/
1996130.1996167.

[Sch+06] N. Schiper, R. Schmidt, and F. Pedone. “Optimistic Algorithms for Partial
Database Replication”. In: Principles of Distributed Systems. Vol. 4305. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 81–
93. ISBN: 978-3-540-49990-9. DOI: 10.1007/11945529_7. URL: http://
dx.doi.org/10.1007/11945529_7.

[Sch+10] N. Schiper, P. Sutra, and F. Pedone. “P-Store: Genuine Partial Replication
in Wide Area Networks”. In: Proceedings of the 2010 29th IEEE Symposium on
Reliable Distributed Systems. SRDS ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 214–224. ISBN: 978-0-7695-4250-8. DOI: 10.1109/SRDS.
2010.32. URL: http://dx.doi.org/10.1109/SRDS.2010.32.

[Sch90] F. B. Schneider. “Implementing fault-tolerant services using the state ma-
chine approach: a tutorial”. In: ACM Comput. Surv. 22.4 (Dec. 1990), pp. 299–
319. ISSN: 0360-0300. DOI: 10.1145/98163.98167. URL: http://doi.
acm.org/10.1145/98163.98167.

[Ser+07] D. Serrano, M. Patino-Martinez, R. Jimenez-Peris, and B. Kemme. “Boost-
ing Database Replication Scalability through Partial Replication and 1-Copy-
Snapshot-Isolation”. In: Proceedings of the 13th Pacific Rim International Sympo-
sium on Dependable Computing. PRDC ’07. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 290–297. ISBN: 0-7695-3054-0. DOI: 10.1109/PRDC.
2007.39. URL: http://dx.doi.org/10.1109/PRDC.2007.39.

[ST95] N. Shavit and D. Touitou. “Software transactional memory”. In: Proceedings
of the fourteenth annual ACM symposium on Principles of distributed computing.
PODC ’95. Ottowa, Ontario, Canada: ACM, 1995, pp. 204–213. ISBN: 0-89791-
710-3. DOI: 10.1145/224964.224987. URL: http://doi.acm.org/10.
1145/224964.224987.

98

http://dx.doi.org/10.1145/1529974.1529980
http://dx.doi.org/10.1145/1529974.1529980
http://doi.acm.org/10.1145/1529974.1529980
http://dx.doi.org/10.1145/1996130.1996167
http://doi.acm.org/10.1145/1996130.1996167
http://doi.acm.org/10.1145/1996130.1996167
http://dx.doi.org/10.1007/11945529_7
http://dx.doi.org/10.1007/11945529_7
http://dx.doi.org/10.1007/11945529_7
http://dx.doi.org/10.1109/SRDS.2010.32
http://dx.doi.org/10.1109/SRDS.2010.32
http://dx.doi.org/10.1109/SRDS.2010.32
http://dx.doi.org/10.1145/98163.98167
http://doi.acm.org/10.1145/98163.98167
http://doi.acm.org/10.1145/98163.98167
http://dx.doi.org/10.1109/PRDC.2007.39
http://dx.doi.org/10.1109/PRDC.2007.39
http://dx.doi.org/10.1109/PRDC.2007.39
http://dx.doi.org/10.1145/224964.224987
http://doi.acm.org/10.1145/224964.224987
http://doi.acm.org/10.1145/224964.224987

BIBLIOGRAPHY

[Sil+13] J. A. Silva, T. M. Vale, J. M. Lourenço, and H. Paulino. “Replicação Parcial
com Memória Transacional Distribuída”. In: INForum 2013: Proceedings of IN-
Forum Simpósio de Informática. Universidade de Évora, 2013.

[Ske82] D. Skeen. “A Quorum-Based Commit Protocol”. In: Berkeley Workshop. 1982,
pp. 69–80.

[Sou+01] A. Sousa, R. Oliveira, F. Moura, and F. Pedone. “Partial Replication in the
Database State Machine”. In: Proceedings of the IEEE International Symposium
on Network Computing and Applications (NCA’01). NCA ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 298–. ISBN: 0-7695-1432-4. URL: http:
//dl.acm.org/citation.cfm?id=580585.883102.

[Sun13] Sun Microsystems, Inc. sun.misc.Unsafe. http://www.docjar.com/
docs/api/sun/misc/Unsafe.html. May 2013.

[Tra13] Transaction Processing Performance Counsil. TPC Benchmark W. http://
www.tpc.org/tpcw. May 2013.

[Val12] T. Vale. “A Modular Distributed Transactional Memory Framework”. MA
thesis. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
2012.

99

http://dl.acm.org/citation.cfm?id=580585.883102
http://dl.acm.org/citation.cfm?id=580585.883102
http://www.docjar.com/docs/api/sun/misc/Unsafe.html
http://www.docjar.com/docs/api/sun/misc/Unsafe.html
http://www.tpc.org/tpcw
http://www.tpc.org/tpcw

	Introduction
	Motivation
	Problem
	Proposed Solution
	Contributions
	Publications
	Outline

	Related Work
	Transactional Model
	Software Transactional Memory
	Semantics
	Implementation Strategies

	Distributed Software Transactional Memory
	Support Mechanisms
	Full Replication Environment
	Partial Replication Environment
	Frameworks

	Summary

	TribuDSTM
	TribuSTM
	Deuce
	External Strategy in Deuce
	In-Place Strategy in TribuSTM

	Putting the D in TribuDSTM
	Distributed Transactions
	Distributed Objects
	Communication System
	Bootstrapping

	Summary

	Supporting Partial Replication with TribuDSTM
	Partial Replication Summarized
	Programming Model
	Limitations

	Runtime System Extensions to TribuDSTM
	Communication System
	Groups
	Data Partitioning

	Implementing a Partially Replicated STM
	Distributed Objects
	Distributed Transactions

	Summary

	Evaluation
	Experimental Settings
	System Configurations

	Benchmarks
	Red-Black Tree Microbenchmark
	Adapted Vacation
	TPC-W

	Results
	Memory Consumption
	Impact of Data Partitioners
	ReadOpt Optimization
	Partial Replication versus Full Replication

	Final Remarks
	Summary

	Conclusion
	Concluding Remarks
	Future Work

