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perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-

emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio

conhecido ou que venha a ser inventado, e de a divulgar através de repositórios cient́ıficos
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I am grateful to Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa for granting me with a scholarship during the M.Sc. course.

To my co-workers and friends who frequented the room of the Arquitectura de Sistemas

Computacionais group, for all the moments we shared.

I would like to acknowledge the following institutions for their hosting and financial
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Abstract

Concurrent programs can take advantage of multi-core architectures. However, writ-

ing correct and efficient concurrent programs remains a challenging task. Transactional

memory eases the task by providing a high-level programming model for concurrent pro-

gramming. Still, tools for analyzing and debugging transactional memory programs are

very scarce. Tools have been developed for debugging support for transactional memory

that rely on logging events (start, commit, etc.) to generate a view of the execution.

During the execution, these events are writen to a log, associating a CPU-core dependent

timestamp to each event. These clocks are not synchronized and so the events recorded in

the log may not respect the real order and appear inconsistent, e.g., the commit event of a

transaction may be recorded as if it happened before the corresponding start. We present

a strategy for ordering the events in a trace log in order to reporduce a consistent view of

the events recorded in the log.

Keywords: transactional memory, monitoring, debugging, clock synchronization, event

ordering

ix



x



Resumo

Programas concurrentes podem tirar vantagem de arquitecturas multi-core. Contudo,

escrever programas correctos é uma tarefa dif́ıcil. Memória transacional facilita a tarefa,

dando ao programador um modelo de programação de alto ńıvel para concurrência. Ainda

assim, ferramentas para analizar e depurar programas de memória transacionais são muito

escassas. Ferramentas de suporte à depuração de programas de memória transacional

focam-se no registo de eventos (start, commit, etc.) para gerar uma vista da execução do

programa. Durante a execução, estes eventos são registados e grava-os num log, associando

um timestamp dependente do core do CPU. Os relógios não estão sincronizos e, assim,

os eventos registados podem não respeitar a ordem real e podem aparecer inconsistências,

e.g., o evento commit de uma transacção pode aparecer pode estar registado como se

tivesse acontecido antes do evento start correspondente. Apresentamos uma estratégia

para reordenar os eventos de modo a gerar uma vista consistente dos eventos registados

no log.

Palavras-chave: memória transactional, monitorização, depuração, sincronização de

relógios, ordenação de eventos
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1
Introduction

1.1 Motivation

The technology of CPUs hit a barrier where the economic effort of producing CPUs by

increasing their clock frequency was no longer viable. While it was technologically possible

to increase CPU performance by simply increasing its frequency, it is economically unfea-

sible to do so due to concerns such as heat losses and power consumption. Multi-core and

multi-processor architectures address this barrier by, instead of developing faster CPUs,

shifting the focus towards aggregating a set of CPUs in a single chip, and letting the Oper-

ating System (OS) distribute the workload among them. Multi-core architectures became

the standard for both personal and industry machines. This paradigm shift in hardware

imposes a paradigm shift in software development, from sequential programming to par-

allel programming.

Nonetheless, the programs developed so far mainly perform their instructions sequen-

tially and cannot take advantage of these new architectures. Concurrent (and parallel)

programming is a way to better utilize the computational resources. Concurrent pro-

grams can exhibit incorrect and unexpected behavior due to concurrent accesses to shared

memory. Synchronization mechanisms, such as semaphores and locks, were developed to

simplify the task of writing a correct concurrent program, solving some problems while

introducing new ones, such as deadlocks. Debugging concurrent programs is not an easy

task. Debugging sequential programs usually relies on checking that the algorithms yield

expected results and looking at the state to make sure it is not inconsistent. In concurrent

programming, we must concern ourselves with the state of several processes running at

the same time, possibly writing in each other’s memory. Re-executing the code is also

not longer a viable debugging option, because a different interleaving of the program’s

1



1. INTRODUCTION 1.2. Non-intrusive Program Monitoring

threads can lead to a very different behavior and result. Debugging tools for concurrent

programming were developed to tackle the issues above.

Transactional memory (TM) was proposed as higher level paradigm for concurrent

programming than other lower level mechanisms, such as threads. This paradigm allows

a set of operations (transactions) to execute atomically. Nevertheless, these are still af-

fected by performance and correction errors. Concurrent programming remains a difficult

task. To identify, diagnose and correct the errors in concurrent programs it is possible to

monitor the behavior of programs during their runtime, logging the relevant events and

analyzing those logs to gather statistical information and behavior patterns that will help

in identifying the observed error.

1.2 Non-intrusive Program Monitoring

Program monitoring relies on performing trace function calls to log certain relevant events

during the execution. The events logged are put into a trace file that represents the time-

-line of the program. Due to the overhead introduced by the tracing calls, the behavior of

a monitored program execution may differ from a non-monitored one. For instance, the

execution of a monitored TM program may have an abort rate of 90%. However, when it

is monitored, that rate may drop to 10%, on account of the tracing intrusion. As a general

case it is acceptable for program to run slower, while being monitored, as long as it shows

the same behavioral pattern of a non-monitored execution. To trace the behavior of a TM

program, it is necessary to register the transactional events (start, commit, etc.), with an

associated timestamp, so the events can be consistently mapped to the time-line of the

program. When a global clock is used, the access to the read the clock value becomes a

bottleneck in the system, as it forces the various threads to synchronize. As such, a global

clock makes the tracing system intrusive and is not a viable option.

One way to address this issue is to use local clocks. If every thread reads from its

own clock then there is no need for a synchronization mechanism. This makes the use of

local clocks a viable alternative. However, local clocks are not synchronized and this may

lead to an inconsistent trace file. For example, a thread may start executing in core 1 and

perform a few operations, then migrate to core 2 and perform the rest of its operations.

It may happen that core 2’s clock has a smaller value than core 1’s clock. In this case, the

instructions performed in core 2 would appear as having been executed before the ones

executed in core 1. If we want to achieve a consistent log, we must synchronize the clock

values. To minimize intrusion, this correction should be done off-line. The offset of the

clock values is not always the same as they usually grow further apart as time passes. This

phenomenon is called clock drift. Clock drift represents the speed at which a clock moves

away from a reference clock.

Another problem is frequency scaling. To mitigate power consumption, the CPU fre-

quency oscillates between low and high frequencies, depending on the workload. Programs

perform slower at lower CPU frequencies and faster at higher frequencies. The program

2



1. INTRODUCTION 1.3. Context

will sometimes run faster and sometimes run slower, when the frequency is varying. This

makes the CPU behavior unpredictable and becomes impossible to reproduce a similar

behavior. Monitoring programs with frequency scaling active is a problem outside the

scope of this work.

1.3 Context

To trace a transactional memory program, we register information about transactional

events (start, commit, abort, reads and writes) that occur during runtime, together with

a timestamp so that we can order the events. We may collect the timestamp by recurring

to a global clock, for instance an atomic counter. However, this introduces additional

synchronization in the program and alters its behavior. A more viable strategy is to use

local clocks, like the register counters available on each CPU core (e.g., the RDTSC in

Intel/AMD CPUs), which will minimize the impact in the program behavior.

Figure 1.1 shows a comparison between the behavior of non-monitored and monitored

execution of transactional memory programs. The left column refers to a Linked List

benchmark and the right column refers to a Red-Black Tree benchmark. The green (or light

grey) lines represent the executions in read dominant environments and the red (or dark

grey) lines represent executions in write dominant environments. The first row shows the

behavior of the benchmarks running without monitoring, establishing the expected runtime

behavior of the programs. The second row shows the behavior of a monitored execution

of the same benchmarks using a Single Atomic Counter (SAC) as a global clock. When

using this type of clock, we can see that the behavior of the programs can change radically,

specifically, the synchronization added by using an atomic counter becomes a bottleneck

in the system and it no longer scales as before. This shows that the usage of a global clock

for monitoring the events of programs is intrusive, making it an unfeasible solution. The

third row shows the execution of the linked list and red black tree benchmarks using the

Time Stamp Counter (TSC), a clock register available on each CPU core, as the local clock

for collecting timestamps. Contrary to the second row, the behavior of these executions

remains similar to the original unmonitored behavior. It is noticeable that the programs

run slower, since they execute less operations per second; however, this slowdown is not a

problem because it is still possible to reproduce a behavior that is similar to an expected

”real world” execution of the program. This shows that the TSC core clocks can be used

as a non-intrusive alternative to the SAC global clock. However, the TSC clocks are

local to each CPU core (and linked to the clock frequency) and, as such, the clocks are

not synchronized which lead to problems when trying to extract debug information from

trace logs. Different timestamp values might be read from different clocks at the same

time, and as time passes the offset between their values may increase causing even more

inconsistencies in the trace log.

Since transactional memory programs execute in a multi-threaded environment, a

transaction may start executing in CPU core 1 and then migrate to CPU core 2 where it

3
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Figure 1.1: The performance of testing applications with and without the monitoring
system.
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ends its execution. If the timestamps collected in core 2 have earlier values than the ones

collected in core 1, then the trace log will show the events in core 2 recorded before the

events recorded in core 1. From the trace log’s perspective, that transaction performed

some operations before it started and so it is an inconsistent trace log.

1.4 Log Inconsistencies

Due to clock drift among the TSC core clocks, the registered events during the program

runtime may be out of order and the generated log may contain inconsistencies. The

events of a given thread from the log might not show the correct ordering according to

their timestamps, i.e., a later event might have a smaller timestamp than a previous event.

However, if the logs’ timestamp appear to give a correct ordering of the events, it is still

possible that some events are out of order, e.g. a log may show that a transaction did a

read operation immediately before the start operation. This can be detected by verifying

that the recorded operations in the log respect the transaction constructs. As such, in-

consistencies can be categorized in two types of inconsistencies: temporal inconsistencies

and operational inconsistencies.

Temporal inconsistencies Temporal inconsistencies refer to the ordering of the events

in the log. They exist when there is an error in the log’s sequence of events. These

inconsistencies are not related to transactional memory and can be used in a general

setting for ordering any sort of events. Nevertheless, they only reveal the most obvious

errors in logs and correcting them does not imply that the log is correct. There can be two

types of temporal mistakes: jumps backward and jumps forward in time. Jumps back in

time are easy to detect in a trace file sorted by operation order. If event ei has timestamp

that is greater or equal that ei+1’s, then time appears to have stopped or gone backwards

and we have an inconsistency. However, ei+1 might have a timestamp much greater than

ei’s and it is hard to detect this as an inconsistency because time kept going forward. The

events after ei+1 may have lower timestamps than ei and we can detect these jumps back

in time. Nevertheless, we will not detect the inconsistency between ei and ei+1.

Operational inconsistencies Semantic inconsistencies point out other kinds of errors

in the log that are related with the domain of transactional memory. Transactional memory

has a well defined syntax that we can take advantage of to look for errors in the logs.

Much like in distributed systems where a message must be sent before it is received, a

transaction must start before it commits or aborts and any transactional memory accesses

performed must be enclosed between a start operations and a commit/abort operation.

These inconsistencies are specific to transactional memory as they represent the invariants

that any correct log must respect.

This work focuses on studying the relation of the TSC core clocks and the system

clock and apply the knowledge about their offsets to correct the errors in trace logs of

5



1. INTRODUCTION 1.5. Contributions

transactional memory programs.

1.5 Contributions

This work contains the following contributions:

• A study of the relation between the system clock and the distributed core clocks;

• An off-line clock synchronization strategy and its implementation;

• Implementation of programs to verify the consistency of transactional logs;

• Experimental evaluation of the proposed strategy;

• A software prototype that is available to the scientific community.

1.6 Outline

This document is divided into the following chapters. Chapter 2 discusses the related work

and the state of the art of areas similar to this work. In Chapter 3 we give a complete

description of our solution and the tools we used to implement it. We also discuss the kinds

of inconsistencies that may appear in trace logs. In Chapter 4 we discuss the benchmarks

we used for the experimental validation of our solution and the obtained results. Finally,

in Chapter 5 we present our concluding remarks.
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2
Related Work

This chapter will provide an overview of the existing related work. Section 2.1 provides an

overview of transactional memory and the most important work and definitions developed.

Section 2.2 provides classifications for clock synchronization approaches and presents the

methods from the literature. Section 2.4 provides a summary of the trace generation

techniques developed so far. Section 2.5 presents the framework developed that is the

motivation of this work.

2.1 Transactional Memory

The advent of multi-core and multi-processor architectures has increased the need for

better parallel programming models. We can classify two forms of parallelism: data paral-

lelism and task parallelism. Data parallelism is a programming model where one operation

is executed over a set of data. Certain languages, like High Performance Fortran, imple-

ment this kind of parallelism. It it useful, for example, for computations over matrices.

Since the parallelism is usually implicit, synchronization and load balancing are delegated

to the compiler or the runtime system. Task parallelism is a programming model where

several operations are executed on different threads. In this model, the coordination is

explicit via fork-join operations, locks, semaphores, etc. While task parallelism is powerful

and a general way of expressing parallelism, it is a low level abstraction which makes it

difficult to work with.

Transactional memory (TM) [HM93] tackles these issues by providing a high level

interface to the programmer to perform task parallelism. A transaction is limited by

a start operation and a commit operation. In between these operations there is code,

specifically, a read and write operations on variables. The set of variables that are read

7
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by the transaction is called the read-set. The set of variables that the transaction writes

on is called the write-set. Semantically, a transaction either executes its entire code, i.e.

it commits, or none of it, i.e. it aborts (as if it never executed). The commit operation

ensures this behavior. Many TM systems also provide an abort operation that explicitly

aborts the transaction. This leads a useful abstraction known as the atomic block. An

atomic block is a programming language construct that wraps a sequence of statements in

between start and commit operations. Reading and writing to variables is also performed

with the semantics described above. Thus the programmer’s task is simplified to deciding

which parts of the code should execute atomically, i.e., are enclosed in atomic blocks.

Transactions provide a useful abstraction for concurrency. They were initially used in

databases. A database transaction has four properties, know as the ACID properties, that

carry onto transactional memory:

• Atomicity - all actions in a transaction complete successfully, or none of them appear

to have executed;

• Consistency - transactions do not violate application specific invariants;

• Isolation - running transactions do not interfere with each other;

• Durability - once a transaction commits, all subsequent transactions should see the

committed transaction’s effect.

The durability property can only be said to carry if we consider that a transaction’s effects

must only remain visible as long as the process’ state is maintained. If a concurrent execu-

tion of transaction yields a result, then there is a sequential execution of those transactions

that yields the same result. This isolation level is known as serializability [HM93]. The

serial order does not need to obey the real-time order in which the operations run, just one

that would yield the same result. There is a stronger version this property, known as strict

serializability [Pap79]. Strict serializability requires that if a transaction completes before

another in the concurrent execution, that transaction must also complete before the other

in the sequential execution. Opacity was formalized by Guerraoui et al. [GK08]. It is a

form of strict serializability in which running and aborted transactions appear in the serial

order, even if their effects are not seen by other transactions. To ensure opacity, a TM

system must guarantee that during a transaction’s execution, its read-set remains consis-

tent. If it didn’t, the tentative work could not be part of the serial order because some

of the work would have to appear before a conflicting update from another transaction,

and some of the work would have to appear after. Another interesting isolation level is

linearizability [HW90]. Linearizability requires that, during execution, every transaction

executes as single atomic operation. Unlike serializability, this isolation level can accomo-

date non-transactional operations in the serial order, as long as they can be considered

to have occured in a single point of time in their execution. The weakest isolation level

is known as snapshot isolation. This is useful when implementing TM systems because

8
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it allows us to make a copy of the state (a snapshot), perform the transaction on that

copy, and at commit the (modified) snapshot is written to memory. It also allows differ-

ent transactions to execute on identical snapshots and then commit the different sets of

updates. However, this may lead to inconsistencies in the memory.

During runtime, if transactions are allowed to interfere with each other, causing a

conflict, they would produce undesirable results that violate the semantics of transactional

memory. For example, when two different transactions try to write on the same variable, or

when one transaction reads a variable while another transaction is writing on it, a conflict

occurs. A conflict can be detected eagerly or lazily. The first strategy detects conflicts

when two (or more) transactions access the same memory zone and one of the accesses

is a write. Conversely, in the lazy scheme conflict detection is delayed until transactions

attempt to commit. When a conflict is detected it can be resolved immediately (for

example, by delaying one conflicting thread) or it can be resolved during the commit by

a contention manager. The contention manager chooses which transactions commit and

which abort (or are delayed) in a way that there is no interference between transactions.

There are many different strategies a contention manager can employ [GHP05a; GHP05b;

SS04; SS05]. The simplest can abort and re-execute the transaction or it can delay the

transaction using an exponential backoff. Some more complex strategies assign a weight

or a priority to each transaction and then use these values to decide which transactions

commit. The most complex strategies are usually a combination of simpler strategies,

such as the ones above. In order to manage the tentative writes a transaction performs

two strategies can be employed. One way to tackle this problem is letting the transaction

write to the memory directly and keep an undo-log in case it gets aborted. The other way

is to perform the writes on buffers and only write them to memory when the transaction

commits. Other problems can occur [Shp+07], specially when combining transactional

and non-transactional code. A transaction may read multiple times from a variable and in

between those reads non-transactional code may write a new value to that variable. Unless

the old value is cached this update will be seen in the transaction. A worse scenario is if

that write was in between transactional reads and writes. This way, the non-transactional

update would be lost. In TM systems that use an undo log, non-transactional code may

read from a value form a variable that was written by a transaction that was eventually

aborted.

2.2 Clock Synchronization

Clock synchronization is the problem of ensuring that a set of clocks yield the same value

when read. Even if the clocks start counting at zero, after some time their values will

start to drift apart. This effect, called clock drift, happens because the clocks are running

at slightly different frequencies. The clocks usually drift at a constant rate. However, if

quartz clocks (the ones used in most computers) are exposed to high temperatures their

drift rate will not be constant. Clock synchronization is important for trace generation as it
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establishes a total order of events. There are two ways of achieving clock synchronization:

external and internal.

In external clock synchronization, there is an external time reference and the clocks

synchronize themselves with that reference. This type of synchronization relies on the time

reference that is responsible for ensuring the correctness of the synchronization. If the time

reference fails, it is not possible to synchronize the clocks. NTP [Mil89] is a protocol widely

used in the Internet to synchronize clocks. It uses a set of time servers (a replicated time

reference) and, for example, the personal computers communicate with the time servers

to synchronize their clocks. The time servers themselves are divided into a hierarchy. At

the top the servers with the most precise clocks and at the bottom the ones with the

least precise. Servers in one layer synchronize themselves with the ones in the above layer.

Cristian [Cri89] presents an algorithm that uses a two types of servers: masters and slaves.

The masters serve as an external time reference and the slaves synchronize themselves with

the masters.

In internal clock synchronization, clocks read each others’ values and compute, or es-

timate, an error bound on that reading. This removes the need for a time reference (that

may fail) but adds the weight of performing more operations on each node to synchro-

nize the clocks. An example of this form of synchronization was presented in [Lam78].

The algorithm synchronizes the clocks of a distributed system by sending timestamped

messages. When a message arrives at a node, it sets its clock to the maximum of its

current value and the increment of the message timestamp, i.e. if a node has its clock

with value c and receives a message with timestamp t, it sets its clock to max(c, t + 1).

This also ensures that every node sees the messages being received after they are sent.

Google’s Spanner [Cor+12] uses Marzullo’s algorithm [MO85] to synchronize clocks across

geographically distributed data centers. Given a set of measurements and their uncer-

tainty, the algorithm ensures that it finds the interval that is consistent with the other

measurements or with most measurements.

Most of the research developed has been in the context of distributed systems. There

are many issues when trying to implement clock synchronization in a distributed system.

In order for the processes to synchronize their clocks, they have to communicate with

each other. This can become a bottleneck, specially if there is a synchronization phase

which will flood the network with timestamped messages. Additionally, the round trip

time of the messages must be taken into account. When a process P sends a timestamped

message to another process Q, P ’s clock will be greater or equal to the timestamp in the

message, when it arrives at Q. In a distributed system, processes can have different types

of failures, such as fail-stop, crash or byzantine. These must be taken into account when

designing a clock synchronization algorithm for a distributed system.

Algorithms for clock synchronization fall into two categories: online and offline. The

system can synchronize its clocks during runtime by measuring or computing the adjust-

ment necessary between the clocks. This is called online clock synchronization. Oth-

erwise, it can collect time information at runtime that, after the program’s execution,
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will be processed and from which the timeline will be rebuilt. This is called offline clock

synchronization.

2.2.1 Online Clock Synchronization

To synchronize clocks at runtime, the system must perform additional actions, such as

reading remote clocks, computing error bounds, performing a synchronization phase, etc.

This added effort can become a bottleneck for the system. For example, during a syn-

chronization phase in a distributed system, the processes must communicate with each

other and synchronize their clocks. This can lead to a quadratic exchange of messages,

coming in a burst, causing poor performance during the synchronization phase. Lamport

timestamps [Lam78] and the Network Time Protocol [Mil89] are both examples of online

clock synchronization.

One way to synchronize the clocks is to synchronize their time and their frequency,

preventing clock drift. In order to do this, Dunigan [Dun92] estimates the offset and skew

of different processor cores in a hypercube machine.

Another way of achieving this is to chose one processor as a time base, and have the

remaining processors synchronize themselves with it. In [MT95], each processor estimates

the offset and drift with relation to the time base. This estimation is done in rounds

where transputers in a cluster communicate via messages. Timestamps are collected at

the sending and receiving of messages on both processors. From this data, and taking into

account the message transmission delay, the offset and drift are computed.

Probabilistic clock synchronization [Cri89; CF94] is an approach that does not ensure

correct results, but achieves them with high probability. When successful, algorithms for

probabilistic clock synchronization achieve higher precision and better performance than

deterministic algorithms. The downside is the possibility of failing to read the correct

clock value.

The more precise the synchronization needs to be, the more measurements it will have

to take, and thus, this will result in worse performance. With less measurements better

performance is achieved, but there is a greater chance a wrong value was read. However,

there is a strict limit on the number of possible measurements taken, so it won’t read clock

values ad infinitum. Some of the measurements might also be discarded because they do

not comply with correctness requirements. This happens when a measurement takes too

long because of a sudden unexpected burst in the network.

By measuring the round trip delay, a process can determine another’s clock value,

within a range. To minimize the maximum error of this reading, the midpoint of the

interval is taken as the estimation, and so the maximum error becomes half the length of

the interval. To read a remote clock with a specified precision, readings of messages that

take too long are discarded and a minimum timeout is also set. The precision increases with

the number of measures made. A maximum number of successive attempts is set, so the

process won’t try to read ad infinitum. The method presented in [Cri89] generalizes clock
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synchronization algorithms as it behaves deterministically, given the precision required

is high enough. This method was further improved [CF94], where it was adapted so it

performs internal clock synchronization. Each process runs a time server, and exchanges

messages with other processes. A family of algorithms is presented [CF94], each tolerating

a different class of failures. The algorithms use a linear number of messages to synchronize

the clocks.

2.2.2 Offline Clock Synchronization

Offline clock synchronization algorithms work by reconstructing the execution timeline,

during post-processing. During execution, timestamps, and additional relevant informa-

tion, are collected when events occur. Reading the timestamps must be a lightweight

operation, as it should not become a bottleneck. After the execution, the collected in-

formation is processed, for example, computing the offsets and drift between the clocks.

After processing all information, it should be possible to have a global timeline of the

events, which can be very useful for establishing their total order.

Offline clock synchronization is useful for program debugging. An execution of a pro-

gram with the time information being collected should have the same behavior as when

it executes without collecting the time information. This does not necessarily mean that

both executions should have similar execution times. An execution with time collection

may run slower than one without, as long as it runs slower at a constant rate, i.e. the

program suffers from the same slowdown at all times.

To avoid intruding in the program execution, timestamps can be taken at relevant

events of the program. This is done in [Wu+00], for massively parallel computers, where

local timestamps are collected at each event occurrence. It also periodically takes a local

and global timestamp pair on each CPU core. With this information it is possible to

compute the offset and drift of each clock with respect to the global clock, and thus

compute the global timestamps of the events.

Gottschlich et al. [Got+12] present a transactional memory tracer that collects times-

tamps when a thread enters and leaves a CPU core and on the start, commit and abort of

transactions. Their framework collects local clock timestamps for lightweight transactions

and global clock timestamps for heavier transactions.

Biberstein et al. [BHH08] present an algorithm for constructing a timeline from the

ordered set of events is given. During execution, the events, and the local time, are logged

into a single buffer, yielding a total order of events. From this, the offsets between events

are computed. The algorithm preserves the event order between threads and the event’s

internal timing in each thread. It does not handle clock drift.
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2.3 Time Stamp Counter

Collecting timestamps is important for benchmarking, as it allows the reconstruction of

the events’ timeline. However, reading from the global system clock is a heavy operation

that would make timestamp collection intrusive. To cope with this, processors have a time

stamp counter on each core.

The time stamp counter is a 64 bit MSR (model specific register) that is incremented

every clock cycle. On reset, the time stamp counter is set to zero. It counts the number

of cycles that have elapsed until it was read, if we wish to convert it into time we can use

the following formula:

seconds =
cycles

frequency

In order to read from the time stamp counter, processors have two instructions available:

rdtsc and rdtscp.

The rdtsc instruction stores the 64 bit unsigned timestamp as EDX:EAX, i.e. the high-

order 32 bits of the timestamp are stored in the EDX register and and the low-order 32

bits into the EAX register. One can recover the timestamp by reading from the EDX value,

shifting the value EDX by 32 bits, and then applying a bitwise OR operation with the value

read from the EAX register.

timestamp = (EDX << 32)|EAX

For Intel 64 processors, the high-order bits of RDX and RAX are cleared.

In order to avoid wasting CPU clock cycles, instructions may be executed in a different

order than the one from the source code. This could be a problem when using the rdtsc

instruction, as it could be executed at a different time than it was expected to and provide

unreliable results. For example, if we want to know the time it takes for a certain operation

to complete we would place it between two rdtsc instructions. Out of order execution

might run the two rdtsc in sequence before the heavy operation. The result would be

that the heavy operation is very cheap, when in fact it is the opposite. To prevent such

erratic behavior, a serializing operation is required.

The cpuid is a serializing instruction that ensures that, when it is executed, the code

above it has finished executing and the code below it has not yet started executing [Gab10].

It also writes processor information to the registers. According to [Int97], the best way

to measure the cost of a cpuid instruction is to call it three times and use the third

measurement.

Current processors also provide another serializing instruction that reads the times-

tamp counter. The rdtscp instruction reads from the high-order 32 bits of the timestamp

register into the EDX register, the low-order 32 bits into the EAX register, and the value of

the CPU id into the ECX register. Once again, a bitwise OR operation can be performed to

recover the timestamp value. For Intel 64 processors, the high-order bits of RDX, RAX and
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RCX are cleared. The rdtscp is a serializing variant of the rdtsc which ensures that, when

it is executed, instructions above it have finished their execution. However, instructions

below it may have already started executing due to out of order execution [Gab10]. To see

if the rdtscp instruction is available on the CPU, rdtscp must be set in the CPU’s flags.

For instance in Linux, do a cat /proc/cpuinfo and see if rdtscp is one of the flags.

Another possible behavior that may cause incorrect result is counter overflow. This

would occur if the measurements took longer than 264 cycles. For a 1 GHz CPU, this

would mean that the code would run longer than:

264

109
= 18446744073 seconds ≈ 585 years

Considering that our main focus is program debugging, counter overflow shouldn’t be a

problem because tracing shouldn’t take more than a few hours at most.

2.4 Trace Generation

When using debugging tools, it is often useful to collect information at runtime to later

analyze and determine the behavior of a program. Collecting data at runtime will make the

program run slower, however, this is not a problem if every step of the program is slowed

down by the same amount. If the tracing slows down different steps by different amounts,

the tracing becomes intrusive. This means that the program behavior will not be the same

than when running without the tracer. In the end, the debugging information collected

will be from a different execution than the real world ones, with different interleavings

between threads and transaction throughput. Thus, the data collected will not yield

significant improvements for the program, since it comes from an execution that does not

show the behavior of an unmonitored (and real world) execution. On one hand, the more

data collected during runtime, the more information we can extract during the analysis.

On the other hand, the more data collected, the longer the trace generation will take. This

will likely make the trace generation more intrusive.

A simple way to generate an ordered trace is to send all information into a single

buffer, as is done in [BHH08], and then writing that buffer to a file, periodically or on

execution end. This poses two issues. The buffer becomes a bottleneck in the system.

The other issue is synchronization. Only one write should be permitted at a time and so a

synchronization mechanism is necessary and further slows the system down. It must also

be considered that the event ordering might not be the correct one, due to data races when

accessing the buffer. In order to achieve viable tracing, it is necessary to distribute the

workload. Additionally, compressing the logs before writing them will reduce the size of

the log and therefore reduce writing time, which makes the trace generation less intrusive.

One can divide the system in two parts, one for collecting information and one for

writing it to disk. The work done by Schindewolf et al. [SK12] makes use of this division

by having a set of threads that collect information and write it to buffers. These buffers
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are accessed by a second set of threads that compress the information and write it to disk.

Multiple files are written as to avoid synchronization mechanism that would induce delays.

A different approach was proposed by Gottschlich et al. [Got+12]. Each thread stores the

log information in its local storage, and when it terminates compresses and writes the

log to the disk. Again separate files are used to avoid synchronization. This work further

reduces the intrusion by not logging the writes and reads. Instead, the contention manager

writes the abort reason on the transaction, when it is aborted, to compensate for some

information loss that could be provided by logging the reads and writes. Wu et al. [Wu+00]

developed a trace analysis framework for MPI. The threads running the MPI calls collect

the log data and write it to a file. Multiple files are generated that are later merged.

This work focuses on further developing previous work by Lourenço et al. [Lou+09].

By providing a programmer API, it is possible to choose which transactions are logged,

at the cost of having to place the framework calls manually. The calls store information

in separate buffers and they are written into a single log file on application termination.

By logging reads and writes of shared resources the intrusion is increased a bit, but the

information retrieved can help infer useful information, like finding which transaction was

conflicting with another transaction that aborted. The events logged are kept in main

memory, using a representation that ensures a small memory footprint.

2.5 JTraceView

This section provides an overview of JTraceView [Lou+09], the monitoring tool for trans-

actional memory programs that this builds upon. The framework logs the start, the

commit or abort, and every read and write to a shared memory location in a transaction.

Specific tracing calls must be added to the source code in order to perform tracing. The

tracing component records events during the program runtime and generates the log when

the execution terminates. The visualizer component then analyzes this log and presents

a graphical representation of the information. JTraceView’s workflow can be seen in Fig-

ure 2.1.

There are seven different event types: TxStart, TxRead, TxWrite, TxCommit, Tx-

AbortUser, TxAbortCommit and TxAbortOther. The structure of a logged event is as

follows:

• timestamp - The time instant in which the event occurred;

• eventId - The identifier for the type of the event (TxStart, TxRead, etc.);

• threadId - The identifier of thread executing the event;

• transactionId - The identifier of the transaction in which the event occurred.

For the TxRead and TxWrite events, the memory location address is also logged.

Each thread keeps the logged events in a private buffer in a compact binary format.

This ensures the framework has a small memory footprint. It also allows threads to work
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Figure 2.1: JTraceView’s workflow.

independently as to not introduce contention between threads. When the application

finishes executing, the events in the buffer are merged into a single text file. See Figure 2.2

for an example log. By having the threads execute independently and only writing the

information to disk at the end of the execution, the tracing performed is not intrusive and

maintains the global application behavior.

4.2 Visualization Modules

4.2.1 Statistical Information Charts

4.2.2 Time-based Behavior Information Charts

Figure 2.2: Event log format and example.

The framework provides a visualization tool that presents statistical information in

the form of charts and shows the transactional computations across a timeline. This

information is generated from the logs. However, these logs can be very large in size and

may not be loaded into memory. Instead, they are viewed as a list of events using a sliding

window to read a limited amount of information from the file. The visualization tool

supports, so far, ten different types of charts:

• Abort Types - Shows the percentage of aborts per type. Helps understand the

eagerness of conflict detection.

• Commit/Abort - Percentage of committed transactions vs aborted transactions.

Shows wasted work.

• Transaction ID - Distribution of user-level transactions. Represents application

behavior by showing which operations are used the most and the least.
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• Read/Write Rates - Percentage of read and write operations performed per trans-

action. Further help in understand application behavior.

• Commit/Aborts XY Chart - Percentage of committed and aborted transactions

across execution time slices. Shows throughput along the execution.

• AccessMemChart - Shows memory position access rate. Helps identify contention

points.

• Transaction Retry Rate - Shows average number of retries per user-level trans-

actional operation. Helps understand contention of each operation.

• Transaction Duration - Shows the minimum, maximum and average duration, in

logical time, of transactions. Helps understand the uniformity (or lack of) of the

work done by transactional operations.

• Abort Reason - Shows percentage of transactions that were aborted by false con-

flicts. Allows to understand if the contention policies of the underlaying TM are

adequate for the transaction.

• Retry Rate - Shows the wasted and useful work distribution. Helps understand

the usefulness of the underlaying TM.

There is also a graph that helps understand the application behavior across time in an

XY-chart. The application threads are represented on the Y-axis and the transaction sta-

tus (start, commit or the user-level transactional operations) of those threads represented

on the X-axis. If a transaction is aborted because of a conflicting transaction, an arrow is

drawn from the commit attempt to the operation that caused the abort.
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3
TMTracer - A Lightweight Library

for Java Programs

This chapter provides a detailed description of our proposal of a lightweight tracing library

for Java programs. Clock synchronization is a classic problem from distributed systems.

Generally, the proposed strategies to address this problem rely on the temporal order

relation of sending and receiving messages and round trip time estimates to adjust the

values of the clocks [Lam78; Mil89]. However, that is not the case for multiprocessor

systems, where there is no message passing and the read/write operations do not share a

temporal ordering. Another issue is that clock error tolerance is greater in the distributed

systems context, since memory accesses are much faster than message passing.

3.1 Approach

The main strategy for our approach is to establish a relation between the evolution of

the time reference and the core clocks. This will allow us to correct the clock drifting

of each core clock and construct a consistent time line of the program’s execution. A

visual description of our strategy is provided in Figure 3.1. Before and after executing the

program, we perform samplings of core-reference timestamp pairs that allow us to estimate

the clock drift between the time reference and each core clock. We perform the sampling

phase not only before the execution, but also after so that if the execution changed the

behavior of the clocks we capture that behavior as well. During the execution, only core

clock timestamps are registered. After the program and sampling phases execution, we

construct a linear regression for each core that is used to correct the timestamps gathered in

that core. Clock synchronization is addressed by estimating the clock drift and knowing
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the initial offsets of the clocks with respect to a time reference. Before and after the

program is run, we perform a sampling phase on the machine to estimate the clock drift

of each core clock against the time reference.

Sampling

Phase 1
Run Program

Sampling

Phase 2

Sampling

Data 1
Event Log

Sampling

Data 2

Run

Correcion

Corrected

Log

Figure 3.1: Description of our strategy’s work-flow.

3.2 Estimating the clock drift

While logging the transactional events, it is important that the timestamps are accurate

and precise to simplify the process of ordering the events by correcting the measured times.

The collection of the timestamps must also be a lightweight operation, in order to avoid

impacting the program runtime behavior. If the operation is intrusive, then the program

will spend a significant amount of its runtime doing time measurements rather than the

original operations and the behavior will change.

To measure the core clock values with precision we use the Time Stamp Counter (TSC)

register. The TSC register is a 64 bit unsigned register that is incremented every clock

cycle and resets on power on. We use the rdtscp instruction, which reads the 64 unsigned

bit value of the Time Stamp Counter register and loads its 32 high order bits into EDX

and the 32 low order bits into EAX. It also loads the CPU core id into the ECX. We use

Java’s System.nanoTime() as our reference clock. The rdtscp uses CPU cycles as a unit

and the Java’s uses nanoseconds. To simplify, we convert Java’s result in nanoseconds to

CPU cycles by multiplying it by the CPU frequency. The reverse conversion from cycles

to nanoseconds would result in an unacceptable of precision.

Initially, we perform a sampling phase to estimate the drift between each core clock
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and the system clock. We use this information to correct the event timestamps, which

contain core clock measurements. The sampling phase runs by taking several core clock

and system clock measurements to establish a parallel progression. Since both operations

can’t be performed at the same time, we take two measurements of the core clock (because

it is lighter) and one system clock measurement in between. We consider the midpoint

of the two core clocks to represent the same time as the system clock measurement. We

also perform dummy work after the three measurements to keep the CPU cores busy, and

measure again. This repeats for a configurable amount of time and executes on every core

of the CPU (one thread per CPU core).

During the monitored execution, the tracing system uses the TSC to register times-

tamps with the logged transactional events. Using the set of core-system timestamp pairs

acquired in the sampling phase, we use a linear regression to construct, for each core i, a

function of the form fi(t) = δit + θi, where δi is the drift rate of core i form the system

clock, and θi is the initial offset of core i to the system clock. Each timestamp ti, taken

in core i, is then corrected by replacing it with fi(ti).

We implemented the sampling phase specification, in Java, and used it as a benchmark

to study the clock drift of eahc core clock with respect to the system clock. We use the

rdtscp instruction to read the TSC clock value as well as the core id. We wrap the call

to the assembly instruction using the Java Native Interface (JNI). The benchmark was

executed on a Sun Fire x4600 machine described in Table ??.

Table 3.1: Machine specifications

Model Sun Fire x4600

Processors 8 dual-core AMD @ 2.7 GHz

Cores 16

RAM 32 GB

The benchmark results showed that the clock drift is linear during segments of time,

as seen on Figure 3.2. However, sometimes there are time jumps and the read value is

much higher than the previous one.

We suspected this might be due to the garbage collector interrupting the program.

There is no way to turn off the Java garbage collector, but the -verbose:gc option of

the JVM allows profiling of the garbage collector behavior. If there is always enough free

memory during runtime, the garbage collector will never do any work. By giving the

program 4 GB of heap memory the garbage collector will always execute for less than a

second and by giving it 8 GB it will never execute (i.e., free or allocate more memory). As

such, we ran the benchmark again giving it 8 GB of heap memory and the results showed,

both in the case with frequency scaling disabled on Figure 3.3 and with frequency scaling

enabled on Figure 3.4, the same linear behavior. The x-axis shows the measurement index

and the y-axis shows the measured value. Since the offset between the TSC and the

system clock is large, we normalize the y-axis values by subtracting the first measurement

(otherwise, the graph would show two horizontal lines.) These results show that clock
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Figure 3.2: Progression of the TSC core clock in one core. Java benchmark for 5 seconds.

drift is a linear function and a linear regression can be used to implement it. Particularly

in the case with frequency scaling disabled, both lines overlap and the graph appears to

only show one line. This happens because they are advancing at the same rate always, due

to the CPU always working at the maximum frequency. With frequency scaling enabled,

the lines do not overlap but the distance between them is constant.
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Figure 3.3: Progression of the system clock vs the TSC core clock, with frequency scaling
disabled. (Both lines overlap.)

Given that clock drift is linear we can build a linear regression to model the offset of

each TSC core clock against the system clock. We take sample data to capture the state of

the clocks before and after the program execution. We then construct a linear regression

for each core. Figures 3.5 and 3.6 show the functions built from the sample data, with

frequency scaling disabled and enabled, respectively. With frequency scaling disabled, the
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function follows the sample data perfectly. However, when frequency scaling is enabled,

each isolated sampling phase shows a linear behavior but the linear regression can’t follow

it and deviates a bit on certain parts. This happens because the benchmark forces all CPU

cores to work at 100% during the entire sampling execution. As such, frequency scaling

does not affect the behavior of the clocks during the sample phases but it does affect their

behavior during program execution.
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Figure 3.5: Linear regression of sample data, with frequency scaling disabled.

23



3. TMTRACER - A LIGHTWEIGHT LIBRARY FOR JAVA PROGRAMS 3.3. Trace Generation

 725

 730

 735

 740

 745

 750

 755

 168  170  172  174  176  178  180  182  184  186

S
ys

te
m

 c
lo

ck
 v

al
ue

 (
10

10
 ti

ck
s)

TSC value (1010 ticks)

Linear regression of sample data (Freq. Scaling)

Sample data
Linear Regression
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3.3 Trace Generation

TribuSTM [DVL12] is a fork of DeuceSTM [KSF10] developed in FCT-UNL that provides

a transactional memory runtime environment for Java programs. Like DeuceSTM, it was

developed with modularity in mind and allows for the implementation and usage of dif-

ferent STM algorithms. It uses an adaptation of JTraceView’s tracing library to generate

execution logs. Regular Java source code is compiled and the generated Java bytecode is

instrumented by TribuSTM. This is when methods marked with the @Atomic annotation

are transformed into transactions. Additional meta-data is also added and memory ac-

cesses are wrapped in function calls. It can deal with multi-dimensional arrays with no

limitations. It also provides an implementation of the STAMP [Cao+08] benchmark.

When TribuSTM runs an application, it launches a number of threads that execute

the transactions. We modified the implementation of the TL2 algorithm in TribuSTM

so that each thread registers transactional events (start, commit, abort, read and write)

during the execution of a TM program for a configurable time interval. The events are

registered in a local buffer for each thread and each buffer holds its events sorted by

execution order, since they are registered sequentially. If this buffer fills up, no subsequent

events are recorded by the thread. The buffers are kept in memory during the execution

and flushed to a merged binary log file when the TM program terminates. We can look at

each thread’s log as a queue of events, since they are recorded sequentially for each thread,

they are already in the right order. The logs are merged by looking at which event at the

head of each thread’s queue has the smallest timestamp, removing it from its queue and

writing it to the merged log. The merging stops when there are no events left (i.e., all

events are in the merged log). This way, the order of events in a thread is preserved in

the global log.
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The threads may migrate between cores causing temporal inconsistencies in the trace

log. Consider the trace generated with three threads depicted in Figure 3.7. Threads 1

and 2 contain no temporal inconsistencies, while Thread 3 contains one between its sec-

ond (middle) and third (top) events, presumably due to a core migration. In this example,

the merging of the thread logs proceeds by taking the events with timestamp 1, 2, 3, 5, 6,

7, 4, 8 and 9. Since the order of events of each thread is preserved, Thread 3’s temporal

inconsistency is preserved in the merged log as well.

Time

Thread 1

TS = 9

TS = 3

TS = 1

Thread 2

TS = 8

TS = 6

TS = 2

Thread 3

TS = 4

TS = 7

TS = 5

Merged Log

TS = 1 TS = 2 TS = 3 TS = 5 TS = 6 TS = 7 TS = 4 TS = 8 TS = 9

Figure 3.7: Merging the logs of three threads into a global log.

Each event has information relative to the transaction it comes from and the timestamp

information recorded. The traced events have the following structure:

• Timestamp: the timestamp read from the TSC core clock;

• Core Id: the id of the core from where the timestamp was read;

• Event Type: the id of the type of the transactional event (start, commit, abort,

read, write);

• Thread Id: the id of the tracing thread;

• Transaction Id: the id relating to the transaction code;

• Instance Id: the id of the transaction instance;

• Address: the address that is read/written to (only for read/write);

• Value: the value written to the address (only for writes).

Although the events are relatively small in size, a large number of them are executed

and recorded, specifically the memory accesses (read and writes). This leads to logs of
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very large size, in the order of Gigabytes for traces of 10 seconds. All of the events have

the same size which allows a simple way to process the logs. The address and value fields

are written with zeros on events that don’t use them.

3.4 Verifying Log Consistency

Analyzing large logs can be a problematic process, as it is not feasible to load them entirely

into memory. Since the log is composed by the threads’ recorded time lines, we need only

to look through each thread sequentially to analyze the events. As such, we implemented

a framework that reads parts of the log into a buffer, analyzes the events in the buffer and

continues to load from the log into the buffer until the end of the log. This is a viable

option because every event has the same size and so the only requirement is that the buffer

size be a multiple of the event size. We provide abstract methods for analyzing an event,

this usually means comparing it with the previous event and storing the information on

some global data structure, and performing a final operation, which we generally use as

output.

As previously mentioned, trace logs may have two kinds of inconsistencies: temporal

inconsistencies and operational inconsistencies. If we aim at eliminating inconsistencies

from trace logs, it is important to develop a methodology for measuring or verifying the

their consistency.

Each tracing thread generates a log of the recorded events, and each thread’s logs are

merged to the global log file. This way, the log contains each thread’s perceived time lines.

To verify the temporal consistency, we look through each of the tracing thread’s time lines

to see if there are timestamps in the wrong order. In other words, we verify that for each

thread, if event e1 precedes event e2, then e1’s timestamp is less than or equal than e2’s

timestamp.

To verify operational consistency, we check the logs and look for premature commits

or aborts. We say these are premature if they appear before the start operation. For a

more fine-grained analysis, we also check and see if the transactions follow their correct

structure. A transaction follows its correct structure if all its read and write operations

appear after a start operation and before the corresponding commit or abort operation.

Any transaction that does not respect this proves there is an inconsistency in the trace

log.
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4
Validation

This chapter presents the experimental validation of this work. For our tests we used

TribuSTM as a runtime environment and the benchmarks were executed on the Sun Fire

machine from Section 3.2. We performed the experimental validation using 8, 16 and 32

(from half to the double of the number of cores) threads, with frequency scaling disabled

and enabled.

Our evaluation focused on three aspects:

• The precision of our correction strategy;

• The feasibility of using the TSC as a global ordering key for events;

• The feasibility of using the TSC to order transactions.

4.1 Clock Synchronization

Depending on the machine setup and properties of programs, the generated execution

traces may represent very differing program behaviors, some are CPU-intensive and per-

form a lot operations, others are memory intensive and take up a lot of RAM, and others

are hybrids of the former. Some of these run very well concurrently, others do not. Some

need synchronization, some don’t.When studying the relation of the core clocks with the

system clock, it is important to not focus on one type of program behaviors and analyze

a wide variety of them.

The STAMP benchmark [Cao+08] provides many different algorithms which allow us

to test many different computational settings. We modified the TL2 implementation of

TribuSTM in order to perform tracing as described in Section 3.3. Each test runs one

STAMP benchmark.
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Clock drift data is obtained before the program execution by sampling the values of

the TSC core clocks and the system clock in each core. The values of each core clock are

measured through the sampling execution, along side the system clock value. This allows

us to establish the progression of the TSC clocks with respect to the system clock. With

this data we analyze the logs and adjust the timestamps using the functions built from

the sampling data.

Vacation The vacation application simulates an on-line travel reservation system. Clients

make reservations of various travel items. Clients can perform reservations, cancellations

and updates. This application uses medium-sized transactions that take up a lot of time

with moderate read and write sets. Vacation uses an efficient locking strategy that makes

it a moderate contention benchmark.

Intruder The intruder simulates a signature intrusion detection system in a computer

network. The processing of packets is divided in three phases: capture, reassembly and

detection. The capture phase uses a FIFO queue and the reassembly phase uses a self-

balancing tree to implement a dictionary. Short transactions perform operations on these

data structures with a small-sized read and write sets in a high contention environment.

Labyrinth The labyrinth algorithm finds a path in a three dimensional maze. Transac-

tions are very large and perform a lot of memory accesses. Since a transaction aborts when

it has an overlapping path with another transaction, it is a high contention environment.

SSCA 2 The Scalable Synthetic Compact Applications 2 (SSCA 2) benchmark performs

operations on a large, directed, weighted multi-graph. It is implemented with adjacency

arrays, whose nodes are added and accessed with transactions. The transactions are small,

with small read and write sets, and perform on a low contention environment.

K-means The K-means algorithm partitions data from an N -dimensional space into

K related clusters, using small transactions and few memory accesses. The contention is

inversely proportional to K, since the more clusters there are, the less likely it is that two

transactions will work on the same one. We used K = 40 clusters, so it performs like a

moderately low contention benchmark.

4.2 Tracing intrusion

A program has a specific behavior when it is executed. For instance, a program can be

CPU-intensive performing a lot of operations or IO-intensive spending most of its time

reading from and writing to streams. Monitoring the execution of a program means

performing additional operations to register useful information. As such the program will

run slower, which is acceptable, and it may demonstrate a different behavior, which is not.
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Figure 4.1: Execution time for the Intruder benchmark.
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Figure 4.2: Execution time for the Vacation benchmark.

In order for a tracing system to be viable, it must be lightweight and preserve the monitored

program’s original behavior. In the case of transactional memory programs, the abort

rate is a good indicator of their behavior. A transactional memory program executing in a

high-contention environment will have a very high abort rate. If the monitoring introduces

synchronization between the the several threads, the abort rate will be much lower and the

information collected will be useless. In this section we evaluate the intrusion of our tracing

system, by analyzing the execution time and abort rate of unmonitored and monitored

executions.

We trace every transactional event and that cost will be evident during runtime. We

compared the execution times of the Intruder benchmark which does a small number

of operations per transaction, and the Vacation benchmark which performs a large of

operations per transaction. Figure 4.1 shows the results of the Intruder benchmark, with

frequency scaling disabled and enabled. For programs that have small transactions the

monitoring of the operations does not encumber a drastic slowdown of the program, it runs

approximately twice as slow. On the other hand, the results of the Vacation benchmark,

shown in Figure 4.2 shows that for programs that have large transactions the overhead

of tracing every memory access starts to take a toll and the program now runs about

six times slower. We can see that the execution times for the monitored execution scale

similarly to the execution times of the unmonitored execution. This is a good indication
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Figure 4.3: Abort rate for the Intruder benchmark.
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Figure 4.4: Abort rate for the Vacation benchmark.

that the runtime behavior is preserved.

Monitoring every operation a transaction performs causes it to run slower. This is

acceptable as long as the program execution retains the behavior of an unmonitored one.

To more accurately measure the intrusion added by our monitoring we used the same two

benchmarks (Intruder, with small transactions, and Vacation, with large transactions)

and compare the abort rates of transactions of monitored executions against unmonitored

ones. Figure 4.3 shows the results for the Intruder benchmark, with frequency scaling

disabled and enabled respectively. The case of 8 threads suffers from the overhead caused

by the monitoring. However, for the cases of 16 and 32 threads the behavior is almost

exactly equal. Since Intruder benchmark performs a small number of operations per

transaction, the case of 8 threads could be showing the base intrusion of our monitoring

system. Figure 4.4 shows the results for the Vacation benchmark, with frequency scaling

disabled and enabled respectively. Here we can see that the overhead of monitoring every

event (specially reads and writes) causes a drastic change in the runtime behavior of the

program. If we want to monitor every memory access performed, this becomes unavoidable

in Java because we have to now also perform a JNI call for every memory access. Similar

to the case of execution times, we can verify that frequency scaling does not affect the

abort rate of the monitoring in a significant way.

The monitored executions run at a slower pace, however they scale in a similar fashion.
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Figure 4.5: Timestamp inconsistencies for the Intruder benchmark.

 0

 50000

 100000

 150000

 200000

8 16 32

N
um

be
r 

of
 In

co
ns

is
te

nc
ie

s

Threads

Thread inconsistencies (Vacation - No F.S.)

Total Events
Before correction

After correction

(a) Without frequency scaling.

 0

 20000

 40000

 60000

 80000

 100000

8 16 32

N
um

be
r 

of
 In

co
ns

is
te

nc
ie

s

Threads

Thread inconsistencies (Vacation - F.S.)

Total Events
Before correction

After correction

(b) With frequency scaling.

Figure 4.6: Timestamp inconsistencies for the Vacation benchmark.

The tracing preserves the behavior of programs that have small transactions almost per-

fectly and impacts the behavior of programs that consistently preform large transactions.

4.3 Correction precision

We evaluated the precision of our correction strategy by taking the original log and substi-

tuting the timestamp values with the corrected ones, thus generating a corrected log. We

evaluated the temporal consistency of both logs by detecting jumps back in time, i.e. when

the event’s timestamp’s don’t increase monotonically. We considered that two sequential

events with the same timestamp to be an inconsistency as well since the TSC increases

fast enough so that when an equality happens it is due to a core migration. Notice that

jumps ahead in time would be another form of temporal inconsistency, however, these

are harder to detect and we do not identify them. This analysis is run on each thread’s

log and counts each thread’s inconsistencies and in the end the results of all threads are

summed. Figure 4.5 and 4.6 show the results for a high and low contention benchmark,

when frequency scaling is disabled and enabled.

The results show that our analysis completely eliminates thread inconsistencies from

the logs when frequency scaling is disabled but is less effective when it is enabled. This

means that a linear regression is a good model for the clock behavior when frequency
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Figure 4.7: Invariant violations for the Intruder benchmark.
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Figure 4.8: Invariant violations for the Vacation benchmark.

scaling is disabled. Recall that even with frequency scaling enabled each sampling phase

showed a linear behavior; however it had a vertical gap between the two data sets. That

gap is due to the clock behavior not following the linear pattern during the benchmark

execution not with frequency scaling enabled. As a result, the correction does not work

for the case of frequency scaling enabled.

4.4 The TSC as a global ordering key

One of main motivations of correcting the TSC values was so it can be used as way to

order the events in the global log. For this analysis, we sorted the events in both the

original log and the corrected log by their respective timestamps.

In order for the log to be well ordered, the read/write events must be in between

their respective start and commit/abort operations, the commit/abort operations can

only appear after their start and a transaction can only abort before it commits. As such

all of this information can be captured in the regular expression:

(S (R|W)* A)* (S (R|W)* C)

Where S, R, W, A and C represent start, read, write, abort and commit events respec-

tively. A log is correctly ordered when its order of events follow the regular expression’s
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Figure 4.9: Percentage of out of place events for the Intruder benchmark.
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Figure 4.10: Percentage of out of place events for the Vacation benchmark.

order. We count the number of times this invariant is broken in the original log and in

the corrected log. After the invariant has been broken, any subsequent events are ignored

until a start event is reached, i.e. until we end up in a correct state again.

Figures 4.7 and 4.8 show the results for a high and low contention benchmark, when

frequency scaling is disabled and enabled . In general, the corrected TSC timestamp is a

good key for ordering the events when frequency scaling is disabled. Again it works well

when frequency scaling is disabled and is less viable when it is enabled.

We also look at how many events are out of place in a log before and after correction

in relation to the total number of events in the log. Figure 4.9 and shows the results

for a high contention benchmark, and Figure 4.10 shows the results for a low contention

benchmark, with frequency scaling disabled and enabled. 4.10b show the same result but

when frequency scaling is enabled. When frequency scaling is enabled the behavior of the

clocks becomes more unpredictable and our strategy can not model it well enough to be

viable.

We also count the number of transactions that have at least one operation before their

start, which we call late starts, and the number of transactions that have at least one oper-

ations before their commit/abort, which we call premature commits/aborts. Figures 4.11

and 4.12 show the late starts for a high and low contention benchmark, when frequency
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Figure 4.11: Late starts for the Intruder benchmark.
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Figure 4.12: Late starts for the Vacation benchmark.

scaling is disabled and enabled. The bar on the left indicates the number of total transac-

tions to provide a comparative idea of the total of these kinds of inconsistencies. Because

the contention is lower when the benchmarks start to execute transactions, there are not

many late starts until we have twice as many threads as the number of CPU cores.

Contention is higher in when transactions begin to commit and abort. Figures 4.13 and

4.14 show the premature commits/aborts for a high and low contention benchmark, when

frequency scaling is disabled and enabled. We can see that we start to have premature

commits/aborts at the 16 threads mark and these increase greatly when we go to 32

threads. The results show both in the case of late starts and premature commits/aborts

that once again our strategy is viable only when frequency scaling is disabled.

4.5 Order between transactions

Another motivation for correcting the timestamps is to provide an ordering of transactions

useful for debugging. One particular piece of information we want to extract is to know

what was the reason for the abort of a transaction. In TL2, a transaction TA aborts when

it reads from/writes to an address that a transaction TC wrote to and committed after

TA’s start and before TA’s abort. We call the kind of aborts where no cause can be found

as conflict-free aborts. Figures 4.15 and 4.16 show the premature commits/aborts for a
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Figure 4.13: Premature commits/aborts for the Intruder benchmark.
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Figure 4.14: Premature commits/aborts for the Intruder benchmark.

high and low contention benchmark, when frequency scaling is disabled enabled. Again

we see that our strategy is viable in the case of frequency scaling disabled, but more than

that it is extremely effective in a high contention setting. This is somewhat expected since

there will be more inconsistencies of this kind to correct in a high contention setting.

4.6 The effects of frequency scaling

In our correction strategy we assume that the clock drift between any TSC core clock and

the system clock is constant. When frequency scaling is disabled this premise is true, since

any given core is working at the same frequency at all times. However, when frequency

scaling is enabled our assumption no longer holds, as the OS adjust the working frequency

of each core.

During the sampling phases with frequency scaling enabled (Figure 3.6), both sampling

phase show a linear behavior to similar to the one when frequency scaling is disabled.

However, there is a gap between the two lines. This gap is a result of the program

execution not following a linear behavior but rather a spline behavior (since CPU frequency

will alternate). Our sampling phase preform the same in both scenarios. As such, they

are not fit to model the behavior of the clocks when frequency scaling is enabled.
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Figure 4.15: Conflict-free aborts for the Intruder benchmark.
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Figure 4.16: Conflict-free aborts for the Vacation benchmark.

4.7 Summary

We have presented the evaluation of our correction strategy in this chapter. We showed

that our tracing system, although making the program run slower, is not intrusive as the

monitored program retains the unmonitored’s program behavior. We evaluated how well

the strategy corrected time inconsistencies and the viability of the TSC as a global ordering

key for the events in a log. When frequency scaling is disabled, the log shows almost no

temporal inconsistencies after correction. The correction is precise enough to allow us to

detect a lot more abort causes for transactions that we previously could not. However,

when frequency scaling is enabled, our strategy no longer works as well. Overall, our

results show that our current strategy is appropriate when frequency scaling is disabled.
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Conclusion

5.1 Concluding Remarks

There has been a lot of reasearch done on transactional memory proving a viable parallel

programming paradigm, yet debugging support for transactional memory is still an open

issue. Transactional memory tracers use multithreading in order to become as unintrusive

as possible; however, if time information to be stored an requires access to the system

clock, it becomes an unfeasible option due to the synchronization overhead. Local clocks

solve this issue, but present another one: they are not synchronized, and so the trace

logs present errors. Clock synchronization has been thoroughly reaserched in the area of

distributed systems, yet there are still few works focusing on offline clock synchronization,

and even less in the case of transactional memory. We measured the clock drift between

the cpu TSC core core clocks and the system clock and showed it to be a linear function.

Based on this, we developed a strategy for achieving offline clock synchronization of TM

trace logs. The synchronization is achieved in two steps: two sampling phases (before and

after the program execution) to compute the clock drift between the cpu cores and system

clock and model it as series of linear regressions (one for each core); and a monitored

execution of the program where the inconsistent log is generated and later fixed with the

linear regressions. Our evaluation showed that our strategy worked for a variety of STAMP

benchmarks.

5.2 Future Work

Our approach tackles the problem of offline clock synchronization, but it makes cerain

assumptions about the runtime environment. One problem not tackled by our approach
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is frequency scaling. Freuquency scaling makes it harder to predict CPU behavior. Our

sampling startegy expects a certain level of predicability from the CPU behavior and it

would be unlikely that it would be useful in eliminating inconsistencies from trace logs if

frequency scaling is enabled. An alternative approach would be to have more configurable

sampling workloads in order to better simulate the real work done by the monitored

program execution. Another strategy would be to have each tracing thread periodically

record the offset between its TSC core clock and the system clock (similar to the strategy

in [Wu+00]). This way it would be possible to rebuild the progression of the clocks during

the real runtime, assuming this strategy wouldn’t be too intrusive.

The currently available tools for debugging TM programs allow for mostly the extrac-

tion of statistical information about the program’s performance. Some allow a view of the

program’s runtime behavior, for example, a timeline of the types of operations performed.

It would be interesting to develop a framework to extract more fine-grained information

for the trace log. An interesting extension to this work would be the development of a

domain specific language that would allow complex queries to perform on the trace log.
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Appendix

A.1 Time Inconsistencies
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(a) Without frequency scaling.
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Figure A.1: Timestamp inconsistencies for the Vacation benchmark.
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Figure A.2: Timestamp inconsistencies for the Intruder benchmark.

43



A. APPENDIX

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

8 16 32

N
um

be
r 

of
 In

co
ns

is
te

nc
ie

s

Threads

Thread inconsistencies (Labyrinth - No F.S.)

Total Events
Before correction

After correction

(a) Without frequency scaling.

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

8 16 32

N
um

be
r 

of
 In

co
ns

is
te

nc
ie

s

Threads

Thread inconsistencies (Labyrinth - F.S.)

Total Events
Before correction

After correction

(b) With frequency scaling.

Figure A.3: Timestamp inconsistencies for the Labyrinth benchmark.
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Figure A.4: Timestamp inconsistencies for the SSCA2 benchmark.
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Figure A.5: Timestamp inconsistencies for the K-means benchmark.
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A.2 Invariant Violations
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Figure A.6: Invariant violations for the Vacation benchmark.
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Figure A.7: Invariant violations for the Intruder benchmark.
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Figure A.8: Invariant violations for the Labyrinth benchmark.
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Figure A.9: Invariant violations for the SSCA2 benchmark.
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Figure A.10: Invariant violations for the K-means benchmark.
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A.3 Out of place events
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Figure A.11: Out of place events for the Vacation benchmark.
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Figure A.12: Out of place events for the Intruder benchmark.
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(a) Without frequency scaling.
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Figure A.13: Out of place events for the Labyrinth benchmark.
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Figure A.14: Out of place events for the SSCA2 benchmark.
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Figure A.15: Out of place events for the K-means benchmark.
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A.4 Late Starts
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Figure A.16: Late starts for the Vacation benchmark.
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Figure A.17: Late starts for the Intruder benchmark.
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Figure A.18: Late starts for the Labyrinth benchmark.
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Figure A.19: Late starts for the SSCA2 benchmark.
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Figure A.20: Late starts for the K-means benchmark.
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A.5 Premature Commits/Aborts
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Figure A.21: Premature commits/aborts for the Vacation benchmark.
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Figure A.22: Premature commits/aborts for the Intruder benchmark.

51



A. APPENDIX

 0

 500

 1000

 1500

 2000

 2500

8 16 32

N
um

be
r 

of
 T

xs

Threads

Premature commits/aborts (Labyrinth - No F.S.)

Total Txs
Before correction

After correction

(a) Without frequency scaling.

 0

 200

 400

 600

 800

 1000

 1200

 1400

8 16 32

N
um

be
r 

of
 T

xs

Threads

Premature commits/aborts (Labyrinth - F.S.)

Total Txs
Before correction

After correction

(b) With frequency scaling.

Figure A.23: Premature commits/aborts for the Labyrinth benchmark.
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Figure A.24: Premature commits/aborts for the SSCA2 benchmark.
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Figure A.25: Premature commits/aborts for the K-means benchmark.
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A.6 Conflict-free Aborts
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Figure A.26: Conflict-free aborts for the Vacation benchmark.
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Figure A.27: Conflict-free aborts for the Intruder benchmark.
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Figure A.28: Conflict-free aborts for the Labyrinth benchmark.
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Figure A.29: Conflict-free aborts for the SSCA2 benchmark.
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Figure A.30: Conflict-free aborts for the K-means benchmark.
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