
Comput Syst Sci & Eng (2013) 1: 59–72
© 2013 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Adaptability driven by quality of
execution in high level virtual
machines for shared cloud
environments
José Simão1,3 and Luís Veiga1,2

1INESC-ID Lisboa
2Instituto Superior Técnico (IST), Portugal
3Instituto Superior de Engenharia de Lisboa (ISEL), Portugal
E-mail: jsimao@cc.isel.ipl.pt, luis.veiga@inesc-id.pt

Cloud infrastructures execute workloads from different tenants supported by a non-trivial virtualization stack, which includes high language virtual machines,
operating system services and system-level virtual machines. As more and more applications target high level virtual machines (such as the Java VM), they
are a relevant abstraction layer not properly explored to enhance resource usage, control, and effectiveness. We propose an economics-inspired model to
balance relative resource savings (e.g., to prioritize tenants) and perceived performance degradation, resulting in a yield of applying a given management
strategy. The model can be used to drive a resource scheduling algorithm aiming to determine where the reduction will be more economically effective, i.e.,
will contribute in lesser extent to performance degradation. We discuss how critical resources (heap size and CPU) can be allocated and transferred among
high level virtual machines. Experimental evaluation shows that the application of our model, when choosing to take the appropriate resource allocation,
results in a significant yield to the cloud provider while, in most cases, execution degradation is small.

1. INTRODUCTION

Workloads running on cluster-enabled infrastructures (e.g.
Cloud Infrastructures) are supported by different levels of vir-
tualization. In these environments, applications running on
high-level language virtual machines (e.g. Java Virtual Ma-
chine, Common Language Runtime) make use of services pro-
vided by the operating system, which shares hardware resources
through the underlying hypervisor (e.g. Xen [5], VMWare ESX
Server [31]). The complexity of this execution stack makes the
allocation of resources fitting the application’s needs (e.g. exe-
cution time, monetary cost) a challenging task.

Although in shared environments such as clouds [24], cycle
sharing infrastrucures [25] or shared computing cluster in gen-
eral, different types of applications can be running, resources

are often delivered in an equal manner to each one, missing the
opportunity to manage the available resources in a more efficient
and application aware or driven way. System virtual machines
provide tools and programmatic interfaces to determine the man-
agement policy of the fine-grained resources they control (e.g.
memory reservation, CPU proportional share). Nevertheless,
they are still far from being fully able to influence the behavior
of a specific application, effectively (wide range and impact),
efficiently (low overhead) and flexibly (with no or little intrusive
coding). This is so because clients of system VM are not the
applications but operating systems which make it more difficult
(from the system VM point of view) to distinguish progress and
influence specific application progress.

As more applications target managed runtimes, High Level
LanguageVirtual Machines (HLL-VM) are a relevant abstraction

vol 29 no 1 November 2013 59

ADAPTABILITY DRIVEN BY QUALITY OF EXECUTION IN HIGH LEVEL VIRTUAL MACHINES FOR SHARED CLOUD ENVIRONMENTS

layer that has not been properly explored to enhance resource us-
age, control, and effectiveness, with increased rich semantics and
flexibility. Therefore, managed runtimes, executing the work-
loads of multiple tenants, must adapt themselves to the execu-
tion of applications, with different (and sometimes dynamically
changing) requirements in regard to their quality-of-execution
(QoE).

QoE aims at capturing the adequacy and efficiency of the re-
sources provided to an application according to its needs. Sev-
eral metrics can be used to infer how applications are making
progress given the resources they are using. It can be inferred
coarsely from application execution time for medium running
applications, or request execution times for more service driven
ones such as those web-based, or from critical situations such as
thrashing or starvation. Also, it can be derived in a more fine-
grained way from incremental indicators of application progress,
such as amount of input processed, disk and network output
generated, execution phase detection or memory pages updates.
Still, for the time being, we will consider the application execu-
tion times.

QoE can be used to drive a VM economics model, where the
goal is to incrementally obtain gains in QoE for VMs running
applications requiring more resources or for more privileged ten-
ants. This, while balancing the relative resource savings drawn
from other tenants’ VMs with perceived performance degrada-
tion. To achieve this goal, certain applications will be posi-
tively discriminated, reconfiguring the mechanisms and algo-
rithms that support their execution environment (or even engag-
ing available alternatives to these mechanisms/algorithms). For
other applications, resources must be restricted, imposing limits
to their consumption, regardless of some performance penalties
(that should also be mitigated). In any case, these changes should
be transparent to the developer and especially to the application’s
user.

Although existing public runtimes (Java, CLR) incorporate
security models that can be used to sandbox the execution of
some components, they simple allow or deny a certain oper-
ation to proceed according to the sandbox permission set. In
the research community, the proposed extended runtimes are fo-
cused on accounting resource usage to avoid application’s bad
behavior, and do not support the reconfiguration of their inner
mechanisms [15, 7]. Furthermore, existing work on adaptabil-
ity in cluster-enabled runtimes does not properly support the
proposed scenario. Meanwhile, others have recently shown
the importance of adaptability at the level of HLL-VMs, ei-
ther based on the application performance [17] or by changes
in their environment [14]. Nevertheless, they are either depen-
dent on a global optimization phase, limited to a given resource,
or make the application dependent on a new programming inter-
face.

This paper presents an economics-inspired model to drive
adaptability in environments where resources are shared by sev-
eral tenants. Our adaptability model is used to determine from
which tenants resource scarcity will hurt performance the least,
putting resources where they can do the most good to appli-
cations and the cloud infrastructure provider. We describe the
integration of this model into QoE-JVM , a distributed execu-
tion environment where nodes cooperate to make an efficient
management of the available local and global resources. At a
lower-level, the QoE-JVM is a cluster-enabled runtime with the

ability to monitor base mechanisms (e.g. thread scheduling;
garbage collection; CPU, memory or network consumptions) to
assess application’s performance and the ability to reconfigure
these mechanisms at runtime. At a higher-level, it drives re-
source adaptation according to a VM economics model based
on aiming overall quality-of-execution through resource effi-
ciency. In this work we apply the yield-based model to mea-
sure the results of different strategies regarding a) the heap
size, based on the relation between the ratio of live objects
and the time spent in GC; b) CPU allocation in a per workload
way.

Section 2 presents the rationale of our adaptation model, based
on the yield obtained from applying different strategies to each
tenant’s workload. Section 3 discusses the overall architecture of
QoE-JVM and how application progress can be measured trans-
parently, along with the type of resources that are relevant to be
adapted at runtime. Section 4 describes the current implemen-
tation effort regarding an adaptive managed runtime, describing
how the adaptation model is used to manage critical resources
such as memory and CPU. Section 5 shows the improvements in
the QoE of several well-known applications. Section 6 relates
our research to other systems in the literature, framing them with
our contribution. Finally, Section 7 closes and makes the final
remarks about our work.

2. QoE-JVM ECONOMICS

Our goal with QoE-JVM is to maximize the applications’ qual-
ity of execution (QoE). We initially regard QoE as a best effort
notion of effectiveness of the resources allocated to the applica-
tion, based on the computational work actually carried out by
the application (i.e., by employing those allocated resources).
To that end, we resort to the Cobb-Douglas production function
from Economics to motivate and to help characterize the QoE,
as described next.

As said, we are partially inspired by the Cobb-Douglas [9]
production function (henceforth referred as equation) from Eco-
nomics to motivate and to help characterize the QoE. The Cobb-
Douglas equation, presented in Equation 1, is used in Economics
to represent the production of a certain good.

Y = A · Kα · Lβ (1)

In this equation, Y is the total production, or the revenue of
all the goods produced in a given period, L represents the labour
applied in the production and K is the capital invested.

It asserts the now common knowledge (not at the time it was
initially proposed, ca. 1928) that value in a society (regarded
simplistically as an economy) is created by the combined em-
ployment of human work (labour) and capital (the ability to
grant resources for a given project instead of to a different one).
The extra elements in the equation (A, α, β) are mostly mathe-
matical fine-tuning artifacts that allow tailoring the equation to
each set of real-life data (a frequent approach in social-economic
science, where exact data may be hard to attain and to assess).
They take into account technological and civilization multiplica-
tive factors (embodied in A) and the relative weight (cost, value)
of capital (α) and labour (β) incorporated in the production out-
put (e.g., more capital intensive operations such as heavy indus-

60 computer systems science & engineering

J. SIMÃO AND L. VEIGA

try, oil refining, or more labour intensive such as teaching and
health care).

Alternatively, labour can be regarded, not as a variable rep-
resenting a measure of human work employed, but as a result,
representing the efficiency of the capital invested, given the pro-
duction output achieved, i.e., labour as a multiplier of resources
into production output. This is usually expressed by represent-
ing Equation 1 in terms of L, as in Equation 2. For simplicity,
we have assumed the three extra elements to be equal to one.
First, the technological and civilization context does not apply,
and since the data center economy is simpler, as there is a sin-
gle kind of activity, computation, and not several, the relative
weight of labour and capital is not relevant. Furthermore, we
will be more interested in the variations (relative increments) of
efficiency than on efficiency values themselves, hence the sim-
plification does not introduce error.

L = Y

K
(2)

Now, we need to map these variables to relevant factors in
a cloud computing site (a data center). Production output (Y)
maps easily to application progress (the amount of computa-
tion that gets carried out), while capital (K), associated with
money, maps easily to resources committed to the application
(e.g., CPU, memory, or their pricing) that are usually charged to
users deploying applications. Therefore, we can regard labour
(considered as the human factor, the efficiency of the capital
invested in a project, given a certain output achieved) as how ef-
fectively the resources were employed by an application to attain
a certain progress.

While resources can be measured easily by CPU shares and
memory allocated, application progress is more difficult to char-
acterize. We give details in Section 3 but we are mostly interested
in relative variations in application progress (regardless of the
way it is measured), as shown in Equation 3, according to relative
variations in resources (to assess resource efficiency), and their
complementary variations in production cost per unit, PCU , as
an approximation of the marginal cost (capital), in resources,
to achieve the obtained progress (output). The term unit is a
generic one because we want to apply this rationale to different
kinds of resources, as described next.

� L ≈ � Y

� K
, and thus � PCU ≈ � K

� Y
(3)

We assume a scenario where, when applications are executed
in a constrained (overcommitted) environment, the infrastructure
may remove m units of a given resource from a set of resources
R (e.g. memory size, CPU cores, bandwidth) and give it to
another application that can benefit from this transfer. Examples
of transferable units are 50 MiBytes of heap size, 1 core and
2 MiBytes of bandwidth. This transfer may have a negative
impact in the application that offers resources and it is expected
to have a positive impact in the receiving application. To assess
the effectiveness of the transfer, the infrastructure must be able
to measure the impact on the giver and receiver applications,
namely somehow to measure the approximate savings in PCU,
that is, the relation between employed resources and effective
progress, as described next.

Variations in the PCU can be regarded as an opportunity for
yield regarding a given resource r , and a management strategy.

The term strategy generically identifies the currently in use and
the available configuration options. Naturally, comparing strat-
egy sa and sb only makes sense if they are of the same nature.
For example, sa and sb can represent different kinds of garbage
collection algorithms or different ratios to grow/shrink the heap
size. So, the yield is a return or reward from applying a given
strategy to some managed resource, during the time span ts, as
presented in Equation 4.

Yieldr (ts, sa, sb) = Savingsr (sa, sb)

Degradation(sa, sb)
(4)

Because QoE-JVM is continuously monitoring the application
progress, it is possible to incrementally measure the yield. Each
partial Yieldr , obtained in a given time span ts, contributes to
the total one obtained. This can be evaluated either over each
time slice or globally when applications, batches or workloads
complete. For a given execution or evaluation period, the total
yield is the result of summing all significant partial yields, as
presented in Equation 5.

TotalYieldr (sa, sb) =
n∑

ts=0

Yieldr (ts, sa, sb) (5)

The definition of Savingsr represents the savings of a given
resource r when two allocation or management strategies are
compared, sa and sb, as presented in Equation 6. The functions
Ur(sa) and Ur(sb) relate the usage of resource r , given two dif-
ferent management strategies or allocation configuration, sa and
sb. For example, if r represents memory then U would be total
bytes currently allocated. We allow only those reconfigurations
which offer savings in resource usage to be considered in order
to calculate yields.

Savingsr (sa, sb) = Ur(sa) − Ur(sb)

Ur(sa)
(6)

Regarding performance degradation, it represents the impact
of the savings, given a specific performance metric, as presented
in Equation 7. Considering the time taken to execute an applica-
tion (or part of it), the performance degradation relates the execu-
tion time of the original configuration, P(sa), and the execution
time after the resource allocation strategy has been modified,
P(sb).

Degradation(sa, sb) = P(sb) − P(sa)

P (sa)
(7)

Each instance of the QoE-JVM continuously monitors the ap-
plication progress, measuring the yield of the applied strategies.
As a consequence of this process, QoE, for a given set of re-
sources, can be enforced observing the yield of the applied strat-
egy, and then keeping or changing it as a result of having a good
or a bad impact. To accomplish the desired reconfiguration, the
underlying resource-aware VM must be able to change strategies
during execution, guided by the global QoE manager. The next
section will present the architecture of QoE-JVM detailing how
progress can be measured and which resources are relevant. Sec-
tion 4 shows how existing high-level language virtual machines
can be extended to accommodate the desired adaptability.

vol 29 no 1 November 2013 61

ADAPTABILITY DRIVEN BY QUALITY OF EXECUTION IN HIGH LEVEL VIRTUAL MACHINES FOR SHARED CLOUD ENVIRONMENTS

Reconfigurable HLL-VM runtime

Class library + resource managemen API

OS (non modified)

Hypervisor

VCPUs
schedulerHost

Memory
Manage

I/O
scheduler

Checkpoint
and restore

Extended runtime
components

(in VM codebase)

Partitioned global address space

Application

QoE Policy Manager

Application
progress metric

Explicit and implicit
resource consumption

events

Acceptance/
New strategy

New strategy

Resource
ManagerGC and

Heap
Manager

JIT
compiler

Checkpoint
and restore

Plug-in and client-
API based

Adaptability
(out VM codebase)

Figure 1: Overall architecture

3. ARCHITECTURE

Figure 1 presents the overall architecture of our distributed JVM
platform as a service for Cloud environments. Our vision is that
QoE-JVM will execute applications with different requirements
regarding their QoE. Target applications have typically a long ex-
ecution time and can spawn several execution flows to parallelize
their work. This is common in the field of science supported by
informatics like economics and statistics, computational biology
and network protocols simulation.

QoE-JVM is supported by several runtime instances, even-
tually distributed by several computational nodes, each one co-
operating to the sharing of resources. For an effective resource
sharing, a global mechanism must be in place to make weak or
strong adaptations, as defined by Salehie et al. in [21]. Weak
adaptation represents adaptations that change parameters (e.g.
modify the heap growth ratio), while strong adaptation deals with
replacing components. The former is usually a light weighted
enforcement. The later can improve the quality of the overall
system but has a potentially high cost of enforcement, as it is
the case of changing the garbage collection algorithm itself or
migrating the application to another node. QoE-JVM encom-
passes a distributed shared objects middleware and a reconfig-
urable high-level language virtual machine (HLL-VM). Regard-
ing these layers, we have augmented existing middleware and
implemented new functionalities inside the HLL-VM [26].

Each instance of an HLL-VM is enhanced with services that
are not available in regular VMs. These services include a) the
accounting of resource consumption; b) dynamic reconfigura-
tion of internal parameters and/or mechanisms; c) mechanisms
for checkpointing, restore and migration of the whole applica-
tion. These services should and must be made available at a
lower-level, inside an extended HLL-VM, for reasons of con-
trol, interception and efficiency. They are transparent to the
application, and so, the extended HLL-VM continues to run ex-

isting applications as they are. In this work we emphasis on
weak/light adaptations while in [28] we have proposed a strong
adaptation mechanism to checkpoint and migrate the execution
state of a HLL-VM.

Although the architecture includes available adaptations
mechanisms, both at the operating system (OS) and system level
virtual machine (Sys-VM), we avoid extending new functional-
ities in these layers to maximize the portability of our solution
and acceptability.

The hypervisor’s internal components are depicted at the bot-
tom of Figure 1. Some of them can be directly configured, as
it is the case of parameters regarding the CPU scheduler and
the host memory. In the case of the memory manager, an extra
mechanism of enforcement must be available at each guest OS to
effectively reclaim memory, i.e. the balloon driver[31]. Guest
operating systems provide several internal tools that typically
do not have a remote API and are mostly used for profiling pro-
poses, not to influence the application behavior. A well known
exception is the priority parameter of OS processes (e.g. the
nice parameter of a Linux process).

The policy manager is responsible for loading and fulfilling the
policies provided by administrators and possibly users regarding
resource management. It achieves this by, globally, sending the
necessary commands to the resource-aware VMs, in order for
them to modify some runtime parameters, or the type of algo-
rithm used. In this work, our policy is based on an economics-
inspired one which was detailed in Section 2. The policy takes
into account the resources allocated and the perceived progress
of each tenant, so that when a reconfiguration is necessary, the
selected tenant will be the one to be hurt the least.

To effectively apply the economic model presented in Sec-
tion 2 it is necessary to quantify the application progress metric,
what resources are relevant and which extension points exist or
need to be created inside the HLL-VM. The next two subsections
will discuss these topics with further detail.

62 computer systems science & engineering

J. SIMÃO AND L. VEIGA

3.1 Resource types and usage

In the model presented at Section 2, Savingsr refers to any com-
putational resource (r) which applications consume to make
progress. Resources can be classified as either explicit or im-
plicit, regarding the way they are consumed. Explicit resources
are the ones that applications request during execution, such as,
number of allocated objects, number of network connections
and number of opened files. Implicit resources are consumed
as the result of executing the application, but are not explicitly
requested through a given library interface. Examples include
the heap size, the number of cores or the network transfer rate.

Both types of resource are relevant to be monitored and reg-
ulated. Explicit and implicit resources might be constrained as
a protection mechanism against ill-behaved or misusing appli-
cation [15]. For well-behaved applications, restraining these
resources further below the application contractual levels will
lead to an execution failure. On the other hand, the regulation of
implicit resources determines how the application will progress.
For example, allocating more memory will potentially have a
positive impact, while restraining memory will have a negative
effect. Nevertheless, giving too much of memory space is not a
guarantee that the application will benefit from that allocation,
while restraining memory space will still allow the application to
make some progress. In this work we focus on controlling some
types of implicit resources because of their potential to provide
elasticity to resource management. QoE-JVM can control the
admission of these resources, that is, it can throttle resource us-
age. It gives more to the applications that will progress faster if
more resources are allocated. Because resources are finite, they
will be taken from (or not given to) other applications. Even
so, the QoE-JVM will strive to choose the applications where
progress degradation is comparatively smaller.

Table 1 presents implicit resources and the throttling prop-
erties associated to each one. These proprieties can be ei-
ther counted values (e.g. x number of cores) or rates (e.g. y

KiBytes/seconds). To regulate CPU and memory both types of
properties are applicable. For example, CPU can be throttled
either by controlling the number of cores or the cap (i.e. the
maximum percentage of CPU a VM is able to use, even if there
is available CPU time). Memory usage can be regulated either
through a fixed limit or by using a factor to shrink or grow this
limit. Although the heap size cannot be smaller than the work-
ing set, the size of the over committed memory influences the
application progress. A similar rationale can be made about re-
source pools (e.g. thread pools, connection pools), which are a
common strategy to manage resources in applications handling
multiple requests, such as web and database servers.

3.2 Progress monitoring

Our economics-inspired metric needs to take as input the perfor-
mance degradation of the application. In practical terms, per-
formance relates to the progress, slower or faster, the application
can make with the allocated resources.

To compare different metrics to measure progress, we classify
applications as request driven (or interactive) and continuous
process (or batch). Request driven applications process work

in response to an outside event (e.g. HTTP request, new work
item in the processing queue). Continuous processing applica-
tions have a target goal that drives their calculations (e.g. align
DNA sequences). For most non-interactive applications, mea-
suring progress is directly related to the work done and the work
that is still pending. For example, some algorithms to analyze
graphs of objects have a visited/processed object set, which will
encompass all objects when the algorithm terminates. If the rate
of objects processed can be determined it will indicate how the
application is making progress. Other examples would be appli-
cations to perform video encoding, where the number of frames
processed is a measure of progress [18, 20].

There is a balance and trade-off in measuring progress, us-
ing a metric that is close to the application semantics, and the
transparency of progress measuring. The number of requests
processed, for example, is metric closely related to the applica-
tion semantic, which gives an almost direct notion of progress.
Nevertheless, it will not always be possible to acquire that in-
formation. On the other hand, low level activity, such as I/O or
memory pages access, is always possible to acquire inside the
VM or the OS. But relating this type of metrics to the application
effective progress is a challenging task. The following are rele-
vant examples of metrics that can be used to monitor the progress
of an application, presented in a decreasing order of application
semantics, but with an increasing order regarding transparency.

• Number of requests processed: This metric is typically
associated with interactive applications, like Bag-of-tasks
environments or Web applications;

• Completion time: For short and medium time living appli-
cations, where it is not possible to change the source code
or no information is available to lead an instrumentation
process, this metric will be the more effective one. This
metric only requires the QoE-JVM to measure wall clock
time when starting and ending the application;

• Code: instrumented or annotated: If information is
available about the application high level structure, instru-
mentation can be used to dynamically insert probes at load
time, so that the QoE-JVM can measure progress using a
metric that is semantically more relevant to the application;

• Mutator execution time. When mutators (i.e. execution
flows of applications) have high execution percentages, in
proportion to the time spent in garbage collector, this in-
dicate that the application is making more progress than
others where garbage collection is using a higher percent-
age of total execution.

• I/O: storage and network: For application dependent on
I/O operations, changes in the quantity of data saved or
read from files or in the information sent and received from
the network, can contribute to determine if the application
reached a bottleneck or is making progress;

• Memory page activity: Allocation of new memory pages
is a low level indicator (collected from the OS or the VMM)
that the application is making effective progress. A similar
indication will be given when the application is writing in
new or previous memory pages.

vol 29 no 1 November 2013 63

ADAPTABILITY DRIVEN BY QUALITY OF EXECUTION IN HIGH LEVEL VIRTUAL MACHINES FOR SHARED CLOUD ENVIRONMENTS

Table 1: Implicit resources and their throttling properties

CPU Mem Net Disk Pools

Counted number of cores size - - size (min, max)
Rate cap percentage growth/ shrink rate I/O rate I/O rate -

Although QoE-JVM can measure low level indicators as I/O
storage and network activity or memory page activity, Section 5
uses the metric completion time to measure performance degra-
dation, as defined in Section 2. This is so because the applica-
tions used to demonstrate the benefits of our system are bench-
marks that are representative of different types of workloads and
have a short execution time. However, the metric mutator exe-
cution time also has an important role because the strategies to
manage the heap, described in Section 4, take into account the
dual of this metric - the ratio of time spent in garbage collection.
In [27] we show how annotated and instrumented code can also
be used to measure the application progress and drive runtime
adaptability.

4. THE ADAPTIVE MANAGED RUNTIME

Controlling resource usage inside a HLL-VM can be carried out
by either i) intercepting calls to classes in the classpath that vir-
tualize access to system resources or ii) changing parameters or
algorithms of internal components. Examples of the first hook
type are classes such asjava.util.Socket (where the num-
ber of bytes sent and received per unit of time can be controlled)
and java.util.concurrent.ThreadPoolExecutor
class (where the parameters minimum and maximum control
the number of threads). An example of the second hook type
is the memory management subsystem (i.e. garbage collection
algorithm, heap size).

We have implemented the JSR 284 - Java Management API,
delegating resource consumption decisions to a callback, han-
dled by a new VM component, the Resource Management Layer
(RML), either allowing it, denying it (i.e. by throwing an ex-
ception), or delaying it, which allows not breaking application
semantics. This extension was built into the research virtual
machine Jikes RVM [3] and the GNU classpath. In a previ-
ous work [26] we describe the details to enforce the JSR-284
semantics and basic middleware support to spawn threads in re-
mote nodes (i.e., across the cluster). In this paper we show how
the yield-driven adaptation process, discussed in Section 2, can
be used to govern global application and thread scheduling and
placement, regarding two other fundamental resources - heap
size and CPU usage.

4.1 Memory: yield-driven heap management

The process of garbage collection (GC) relates to execution time
but also to allocated memory. On the CPU side, a GC algorithm
must strive to minimize the pause times (more so if of stop-the-
world type). On the memory side, because memory management
is virtualized, the allocated memory of a managed language run-

time is typically bigger than the actual working set. With many
runtimes executing in a shared environment, it is important to
keep them using the least amount of memory to accomplish their
work.

Independently of the GC algorithm, runtimes can manage the
maximum heap size, mainly determining the maximum used
memory. In the memory management system of the research
runtime Jikes RVM [3], after a full heap collection, the runtime
considers whether the heap should change size. The algorithm
to change the heap size takes into account the percentage of
live objects and the ratio of time spent in GC. Live objects ratio
measures the relation between the total memory reserved (which
includes large, immortal and non-movable objects spaces) and
the space reserved for regular objects allocation, as presented in
Equation 8.

liveObjectsRatio = reservedMemory

currentHeapSize
(8)

On the other hand, the ratio of time spent in GC measures
the relation between the accumulated time spent in GC related
activities and total application time, as presented in Equation 9.

gcTimeRatio =
∑n

collection=0 GCDurationcollection

totalAppTime
(9)

This heap size change policy is represented by a function that
takes as input the liveObjectsRatio and the gcTimeRatio, return-
ing the heap size growth/shrink percentage. In this paper we
refer to this function as a matrix because it maps two parame-
ters to one. The default policy determine that the heap shrinks
about 10% when the time spent in GC is low (less than 7%)
when compared to regular program execution, and the ratio of
live objects is also low (less than 50%). This allows for savings
in memory used. On the other hand, the heap will grow for about
50%, when the execution environment spends more time in GC
activities, and the number of live objects still remains high. This
growth in heap size will lead to an increase in memory used by
the runtime, aiming to use less CPU time because the GC will
run less frequently.

Considering this heap management strategy, the heapsize is
the resource which contributes to the yield measurement. To
determine how the workloads executed by each tenant react to
different heap management strategies, such as, more targeted at
heap expansion or more at heap saving, we apply Equation 6.
The memory savings (Savingshsize) are then found by comparing
the results of applying two different allocation policies, that is,
two different allocation matrices, Mα and Mβ , as presented in
Equation 10. In this equation, Uhsize represents the maximum
number of bytes assigned to the heap.

Savingshsize = Uhsize(Mα) − Uhsize(Mβ)

Uhsize(Mα)
(10)

64 computer systems science & engineering

J. SIMÃO AND L. VEIGA

4.2 CPU: yield-driven CPU ballooning

A similar approach can be extended to CPU management em-
ploying a strategy akin to ballooning.1 In our case, the balloon-
ing is carried out by taking CPU from an application by assigning
a single core and adjusting the CPU priority of its encompassing
JVM instance. This makes the physical CPUs available for other
VMs. This is achieved by engaging the Resource Management
Layer of our modified JVM that, ultimately, either interfaces with
available confinement mechanisms at the OS layer such as con-
tainers [30, 6], akin approaches specifically designed for CPU
scheduling [13], or with the hypervisor CPU scheduler [5, 1],
lowering CPU caps.

Thus, regarding CPU as the resource, the savings in computa-
tional capability (that can be transferred to other tenants) can be
measured in FLOPS or against a known benchmark as Linpack.
The savings are found by comparing two different CPU shares
or priorities, CPUα and CPUβ , as presented in Equation 11. In
this case Uflops give us the total CPU saved, e.g., relative to the
number of FLOPS or Linpack benchmarks that can be run with
the CPU ‘saved’.

Savingsflops = Uflops(CPUα) − Uflops(CPUβ)

Uflops(CPUα)
(11)

The next section presents the impact of these modifications in
the runtime and the results of applying our resource management
strategy related to heap management and CPU share.

5. EVALUATION

In this section we discuss how the resource management eco-
nomics, presented in Section 2, were applied to manage the
heap size and CPU usage regarding different types of work-
loads. We evaluated our work using Intel(R) Core(TM) i7 (with
four cores), 8MiBytes of cache and 12GiBytes of RAM, running
Linux Ubuntu 12.04 LTS. Jikes RVM code base is version 3.1.2
and the production configuration was used to build the source
code.

5.1 QoE Yield applied to memory manage-
ment

The default heap growing matrix (hereafter known as M0) is
presented in Figure 2.a. In this, and in the remaining matrices,
1.0 is the neutral value, representing a situation where the heap
will neither grow nor shrink. Other values represent a factor of
growth or shrink, depending if the value is greater or smaller than
1, respectively. To assess the benefits of our resource manage-
ment economics, we have designed and set up three new heap
size changing matrices. The distinctive factors are the growth
and decrease rates determined by each matrix.

Matrices M1 and M2, presented in Figure 2.b and 2.c, impose
a strong reduction on the heap size when memory usage and

1Employed by virtual machine monitors in system VMs, prior to migration,
by having a kernel driver allocating memory pages excessively, in order to drive
the guest OS to swapping and reduce the amount of useful pages in guest physical
memory. This allows the core working set of the guest VM to be obtained with
a grey-box approach.

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

oitaR

fo

evil

stcejboht
wor

G

etar

Ra�o of �me spent in GC

(a) M0

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

oitaR

fo

evil

stcejboht
wor

G

etar

Ra�o of �me spent in GC

(b) M1

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

oitaR

fo

evil

stcejboht
wor

G

etar

Ra�o of �me spent in GC

(c) M2

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

oitaR

fo

evil

stcejbo

ht
wor

G

etar

Ra�o of �me spent in GC

(d) M3

Figure 2: Default (M0) and alternative matrices to control the
heap growth.

management activity is low (i.e. few live objects and short time
spent on GC). Nevertheless they provide very different growth
rates, with M1 having a faster rate when heap space is scarce.

vol 29 no 1 November 2013 65

ADAPTABILITY DRIVEN BY QUALITY OF EXECUTION IN HIGH LEVEL VIRTUAL MACHINES FOR SHARED CLOUD ENVIRONMENTS

Finally, matrix M3 makes the heap grow and shrink very slowly,
enforcing a more rigid and conservative heap size until program
dynamics reach a high activity point (i.e. high rate of live objects
and longer time spent on GC) or decrease activity sharply.

The overall behavior of the matrices can be visualized, in
alternative, as directives for percentage increases and reductions
in heap size, being depicted with colored arrows in Figure 3-a to
-d.

Furthermore, to compare the matrices from a quantitative
point of view we define two norms, the growth norm, presented
in Equation 12 and the shrink norm, presented in Equation 13.
These capture the aggressiveness of impact (when expanding
or shrinking), that the different matrices have in the heap size,
and its skew/bias towards expansion or shrinkage (more or less
expander, or shrinking-driven). In particular, Equation 12 calcu-
lates a sum, across the two dimensions of the matrix (inspired by
an integral over a plane, but in a discrete domain), aggregating
only the net contributions for heap expansion found in the matrix
(only the part greater than 1 in each element). Conversely, Equa-
tion 13 calculates a sum, across the two dimensions of the matrix
(also inspired by an integral over a plane), this time aggregating
only the net contributions for heap reduction in size.

‖M‖growth =
n∑

i=1

m∑
j=1

g(aij),

where g(x) =
{

x − 1 if x > 1,

0 if x <= 1
(12)

‖M‖shrink =
n∑

i=1

m∑
j=1

s(aij),

where s(x) =
{

1 − x if x < 1,

0 if x >= 1
(13)

Table 2 summarizes the norms of the four matrices (M0 from
the base implementation of Jikes RVM, and M1, M2 and M3
proposed alternatives). This helps us classifying a matrix and
to quickly infer its expected behavior. Matrix M0 is clearly bi-
ased towards expansion as its growth norm is greater than its
shrink norm. This bias is assessed by the 8.08 ratio meaning
an eight-fold potential more impact towards expansion than to-
wards shrinkage. For instance, matrix M2 has an opposite bias,
as its norm ratio is 0.14, roughly 7 times more potential im-
pact towards shrinkage than towards growth. Both of them have
similar aggressiveness regarding aggregated impact (5.45 and
5.40).

On the other hand, matrices M1 and M3 have much reduced
and almost no bias, as their growth and shrinkage norms are
almost equivalent, hence the ratio around one (1.08 and 0.85).
However they are very different relating to aggressiveness or
potential impact, top for M1 and very small for M3.

Each tenant using the Cloud provider infrastructure can po-
tentially be running different programs. Each of these programs
will have a different production, i.e. execution time, based on
the capital applied, i.e. the growth rate behavior allowed for
the the heap. To represent this diversity, we used benchmarks
from DaCapo [8] and SPECjvm2008 [2], which correspond to
different ways of organizing programs in the Java language.

Figure 4 shows how the previously discussed matrices influ-

Table 2: Growth and shrink norms and their relation

M0 M1 M2 M3 interpretation

‖·‖growth 4.85 4.05 0.65 0.65
‖·‖shrink 0.60 4.75 4.75 0.60
‖·‖growth
‖·‖shrink

8.08 0.85 0.14 1.08 (bias/skew)
‖·‖growth + ‖·‖shrink 5.45 8.08 5.40 1.35 (aggressiveness/

potential)

ence the use of different heap grow/shrink ratios when executing
the benchmarks. Each figure plots in the y-axis the frequency, in
a normalized form, with which a given growth (x-value greater
than 1) or shrink (x-value lower than 1) ratio is used, after a de-
cision to change the heap size. From Figure 4.b, we can confirm
that matrix M1 is the one with a potential for larger impact (ag-
gressiveness) because it causes heap change percentages with
values from a wider interval, when compared to the remainder
matrices. On the other hand, Figure 4.d corroborates that ma-
trix M3 is the one with the smallest aggressiveness as it uses the
smallest interval of values.

Figure 5.a shows the maximum heap size (left axis) after run-
ning the DaCapo benchmarks with configuration large and
a subset of SPECjvm20082 using all the matrices presented in
Figure 2. The yield of each matrix is compared with a scenario
where the memory management system uses a neutral matrix
(all 1’s) with a heap size fixed to 350 MiBytes. When using the
four matrices, the heap size was configured to change between a
minimum of 50MiBytes and a maximum of 350MiBytes. In the
right axis we present the average resource savings, as defined in
Equation 6. The resource savings are above 40% for the majority
of the workloads, as can be seen in more detail in Table 3.

In Figure 5.b we present the evaluation time of the benchmarks
(left axis) and the average performance degradation (right axis),
as defined in Equation 7, regarding the use of each of the ma-
trices. Degradation of execution time reaches a fourfold value
for lusearch, Apache’s fast text search engine library, but stays
below 25% for the fast majority of the benchmarks. In particu-
lar regarding the SPECjvm2008 benchmarks, most of them have
negative performance degradation, that is, they run faster with
the growth/shrink matrices controlling the heap than with a fixed
size. Table 3, summarizes the yield, as defined in Equation 4.

Two aspects are worth nothing. First, under the same resource
allocation strategy, resource savings and performance degrada-
tion vary between applications. This demonstrates the useful-
ness of applying different strategies to specific applications. If
the cloud provider uses M2 for a tenant runninglusearch type
workload it will have a yield of 1.7. If it uses this aggressive
saving matrix in xalan type workloads (Apache’s XML trans-
formation processor) it will yield 10.7, because it saves more
memory but the execution time suffers a smaller degradation.
Second, a negative value represents a strategy that actually saves
execution time. Not only memory is saved but execution time is
also lower. These scenarios are a minority though as they may
simply reveal that the 350 MiBytes of fixed heap size is causing
too many page faults for that workload.

2Given to incompatibilities with the GNU classpath not all SPECjvm2008
can be successfully executed in Jikes RVM

66 computer systems science & engineering

J. SIMÃO AND L. VEIGA

0% 10% 30% 60% 80% 100%
0% -10% -10% -5% 0% 0% 0%
1% -10% -10% -5% 0% 0% 0%
2% -5% -5% 0% 0% 0% 0%
7% 0% 0% 10% 15% 20% 20%

15% 0% 0% 20% 25% 35% 30%
40% 0% 0% 25% 30% 50% 50%

100% 0% 0% 25% 30% 50% 50%

Ra�o of live objects

C
G ni tneps e

mit fooitaR

(a) M0 percentage increments

0% 0% 0% 0% 0% 0%
0% -45% -45% -40% 0% 0% 0%
1% -45% -45% -40% 0% 0% 0%
2% -40% -40% -35% 0% 0% 0%
7% -35% -35% -30% 15% 20% 20%

15% 0% 0% 0% 25% 35% 30%
40% 0% 0% 0% 30% 50% 50%

100% 0% 0% 0% 30% 50% 50%

Ra�o of live objects

C
G ni tneps e

mit fooitaR

(b) M1 percentage increments

0% 0% 0% 0% 0% 0%
0% -45% -45% -40% 0% 0% 0%
1% -45% -45% -40% 0% 0% 0%
2% -40% -40% -35% 0% 0% 0%
7% -35% -35% -30% 0% 0% 0%

15% 0% 0% 0% 5% 5% 5%
40% 0% 0% 0% 5% 10% 10%

100% 0% 0% 0% 5% 10% 10%

C
G ni tneps e

mit fooitaR

Ra�o of live objects

(c) M2 percentage increments

0% 0% 0% 0% 0% 0%
0% -10% -10% -5% 0% 0% 0%
1% -10% -10% -5% 0% 0% 0%
2% -5% -5% 0% 0% 0% 0%
7% 0% 0% 0% 0% 0% 0%

15% 0% 0% 0% 5% 5% 5%
40% 0% 0% 0% 5% 10% 10%

100% 0% 0% 0% 5% 10% 10%

Ra�o of live objects

C
G ni tneps e

mit fooitaR

(d) M3 percentage increments

Figure 3: Growth and shrink percentage for each matrix

vol 29 no 1 November 2013 67

ADAPTABILITY DRIVEN BY QUALITY OF EXECUTION IN HIGH LEVEL VIRTUAL MACHINES FOR SHARED CLOUD ENVIRONMENTS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

50

100

150

200

250

300

350

400)sety
B

M(eziS pae
H

m u
mi xa

M

Const M0 M1 M2 M3 Average Savings

(a) Maximum heap size and average savings percentage

-10%
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0.0

0.2

0.4

0.6

0.8

1.0

e
miT n

oitucexE de zila
mr

o
N

Const M0 M1 M2 M3 Average Degrada�on

(b) Execution time and average performance degradation percentage

Figure 5: Results of using each of the matrices (M0..3), including savings and degradation when compared to a fixed heap size.

Table 3: Heap Size Savings, Execution Degradation and Yield

xa
la

n

hs
ql

db

jy
th

on

pm
d

lu
se

ar
ch

lu
in

de
x

bl
oa

t

an
tlr

fo
p

sc
im

ar
k.

ff
t.l

ar
ge

sc
im

ar
k.

so
r.l

ar
ge

sc
im

ar
k.

sp
ar

se
.la

rg
e

sc
im

ar
k.

m
on

te
_c

ar
lo

co
m

pr
es

s

m
pe

ga
ud

io

Savings
M0 0.0% 7.7% 60.6% 51.4% 59.4% 70.0% 56.7% 62.3% 74.9% 1.4% 5.4% -0.3% 85.7% 51.9% 83.7%
M1 29.7% 15.7% 69.7% 70.6% 65.1% 76.3% 69.1% 78.0% 79.4% 24.9% 18.1% 13.8% 85.7% 67.3% 87.1%
M2 56.0% 38.0% 85.1% 84.6% 81.4% 85.7% 85.7% 85.7% 85.7% 53.0% 45.3% 32.1% 85.7% 78.2% 85.7%
M3 45.7% 28.0% 79.1% 76.9% 74.3% 84.0% 78.2% 84.3% 80.6% 31.5% 46.4% 12.9% 85.7% 75.1% 85.7%

Degradation
M0 -1.5% -1.2% 17.6% 8.6% 20.3% 9.1% 14.5% 3.9% -2.1% 1.2% -0.1% 6.4% 0.3% 4.2% 6.7%
M1 7.4% -3.5% 2.5% 7.7% 26.1% 14.7% 12.4% 24.8% -3.2% 2.7% -0.1% -2.6% 0.8% -1.9% -0.1%
M2 11.2% 50.9% 80.5% 43.7% 225.5% 26.9% 17.7% 31.0% 18.7% -13.0% -2.9% -2.7% -0.2% -16.2% 2.4%
M3 7.6% 17.0% 13.1% 23.2% 66.2% 25.0% -4.9% 39.4% 10.8% -11.3% -6.7% -2.4% 1.5% -7.8% 3.0%

Yield
M0 0.0 -6.6 3.4 6.0 2.9 7.7 3.9 15.8 -36.3 1.2 -89.6 0.0 280.8 12.5 12.4
M1 4.0 -4.5 28.4 9.2 2.5 5.2 5.6 3.1 -24.7 9.4 -297.1 -5.3 106.3 -36.4 -649.2
M2 5.0 0.7 1.1 1.9 0.4 3.2 4.8 2.8 4.6 -4.1 -15.9 -11.9 -393.2 -4.8 35.2
M3 6.0 1.7 6.1 3.3 1.1 3.4 -15.8 2.1 7.5 -2.8 -6.9 -5.4 57.8 -9.6 28.7

5.2 QoE Yield applied to CPU usage

Our system also takes advantage of CPU restriction in a coarse-
grained approach. Figure 6 shows how five different Java work-
loads (taken from the DaCapo benchmarks) react to the depri-
vation of CPU (in slices of 25%), regarding their total execution
time. Figure 7 shows the relative performance slowdown, which

represents the yield of allocating 75%, 50% and 25%, comparing
with 100% of CPU allocation. Note that, comparing with pre-
vious graphics, some applications have longer execution times
with 0% CPU taken because they are multithreaded and we used
only 1 core for this test.

As expected, the execution time grows when more CPU is
taken. This enables priority applications (e.g. paying users, pri-

68 computer systems science & engineering

J. SIMÃO AND L. VEIGA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
8.0
48.0
88.0
29.0
69.0
1 40.1
80.1
21.1
61.1
2.1
42.1
82.1
23.1
63.1
4.1
44.1
84.1
25.1
65.1
6.1

margotsih dezila
mro

N

GC ra�os

(a) M0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

8.0
48.0
88.0
29.0
69.0
1 40.1
80.1
21.1
61.1
2.1
42.1
82.1
23.1
63.1
4.1
44.1
84.1
25.1
65.1
6.1

margotsih dezila
mro

N

GC ra�os

(b) M1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

8.0
48.0
88.0
29.0
69.0
1 40.1
80.1
21.1
61.1
2.1
42.1
82.1
23.1
63.1
4.1
44.1
84.1
25.1
65.1
6.1

margotsih dezila
mro

N

GC ra�os

(c) M2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

18.0
58.0
98.0
39.0
79.0
10.1
50.1
90.1
31.1
71.1
12.1
52.1
92.1
33.1
73.1
14.1
54.1
94.1
35.1
75.1

margotsih dezila
mro

N

GC ra�os

(d) M3

Figure 4: Histogram of GC ratios for each benchmark

ority calculus applications) to run efficiently over our runtime,
having the CPU usage transparently restricted and given to oth-
ers (a capability in itself currently unavailable in HLL-VMs).

Finally, we note that the following applications (hsqldb, fop
and antlr) have yields greater than 1 when CPU restriction is
equal or above 50%, as they stay below the neutral efficiency
line in Figure 7, due to memory or I/O contention. This is more
clearly visible in Figure 8, where we can see those applications
having relative efficiency gains when resources are partially re-
stricted (and to what extent), as well as those that loose relative
efficiency, but always to a smaller extent.

6. RELATED WORK

Adaptability is a vertical activity in current systems stack.
System-wide VMs, high level language VMs and special pro-
pose middleware can all make adaptations of their internal mech-
anisms to improve the system performance in a certain metric.

These three levels of virtualization have different distances to
the machine-level resources, with an increasing distance from
system-wide VMs to special purpose middleware. The dual of
this relation is the transparency of the adaptation process from
the application perspective. A system-wide VM aims to dis-
tribute resources with fairness, regardless of the application pat-
terns or workload. On the other end is the middleware approach
where applications use a special purpose programming interface
to specify their consumption restrictions. As more applications
target high level language VMs, including the ones running on
cloud data centers, this virtualization level, which our work en-
compasses, has the potential to influence high impact resources
(akin to system-wide VMs), using application’s metrics (akin to
the middleware approach) but still with full transparency. This
section presents work related to these three virtualization levels,
focusing on adaptations whose goal is to improve the application
performance by adapting the infrastructure mechanisms.

In [23], Sharma et al. present a way to dynamically provision
virtual servers in a cloud provider, based on pricing models.
They target application owners (i.e. suppliers of services to end
users) who want to select the best configuration to support their
peak workloads (i.e. maximum number of requests per second
successfully handled), minimizing the cost for the application’s
owner. Sharma’s work uses different mechanisms to guarantee
the provisioning of resources, which include: readjusting CPU,
memory caps and migration. To make good decisions they need
to know, for each application, what is the peak supported by each
provider’s configuration, which is dependent on real workloads.
Furthermore, because changes to the configuration of virtual
servers is driven by the number of requests per second, it can
miss the effective computation power needed by each request.

Shao et al. [22] adapts the VCPU mapping of Xen [5] based
on runtime information collect at each guest’s operative system.
The numbers of VCPUs is adjusted to meet the real needs of each
guest. Decisions are made based on two metrics: the average
VCPU utilization rate and the parallel level. The parallel level
mainly depends on the length of each VCPU’s run queue. Shao’s
work on specific native applications. We believe our approach
has the potential to influence a growing number of applications
that run on high-level language virtual machines and whose per-
formance is also heavily dependent on memory management.
PRESS [16] tries to allocate just enough resources to avoid ser-
vice level violations while minimizing resource waste. It tracks

vol 29 no 1 November 2013 69

ADAPTABILITY DRIVEN BY QUALITY OF EXECUTION IN HIGH LEVEL VIRTUAL MACHINES FOR SHARED CLOUD ENVIRONMENTS

0

20

40

60

80

100

120

140

160

180

200

0% 25% 50% 75%

s
d

n
oces

ni e
mit

n
oit

ucexE

Percentage of CPU restriction

xalan

bloat

antlr

fop

hsqldb

jython

pmd

lusearch

luindex

Figure 6: Effects of restraining CPU by 25%, 50% and 75%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4

n

w
o

d
w

ols evitale
R

)

n
oitadarge

d ecna
mrofre

p(

Relative restriction of CPU allocated

neutral

xalan

bloat

antlr

fop

hsqldb

jython

pmd

lusearch

luindex

Figure 7: Relative slowdown

resource usage and predicts how resource demands will evolve
in the near future. To that end, it employs a signal processing
or a statistical method to detect patterns, adjusting resource caps
(with a tolerance factor) based on this analysis.

Ginko [17] is an application-driven memory overcommitment
framework which allows cloud providers to run more system
VMs with the same memory. For each VM, Ginkgo collects
samples of the application performance, memory usage, and sub-
mitted load. Then, in production phase, instead of assigning the
same amount of memory for each VM, Ginko takes the previ-
ously built model and, using a linear program, determines the
VM ideal amount of memory to avoid violations of service level
agreements. Our approach does not have a global optimization
step each time we need to transfer resources among VMs.

High level languages virtual machines are subject to different
types of adaptation regarding the just in time (JIT) compiler and

memory management [4]. Nevertheless, most of them are hard
coded and cannot be influenced without building a new version
of the VM.

In [11], Czajkowski et al. propose to enhance the resource
management API of the Multitask Virtual Machine (MVM) [12],
forming a cluster of this VMs where there are local and global
resources that can be monitored and constrained. However, Cza-
jkowski’s work lacks the capacity to determine the effectiveness
of resource allocation, relying on predefined allocations. In [19],
a reconfigurable monitoring system is presented. This system
uses the concept of Adaptable Aspect-Oriented Programming
(AAOP) in which monitored aspects can be activated and de-
activated based on a management strategy. The management
strategy is in practice a policy which determines the resource
management constraints that must be activated or removed dur-
ing the application lifetime.

70 computer systems science & engineering

J. SIMÃO AND L. VEIGA

-4%

-2%

0%

2%

4%

6%

8%

nalax

taolb

rltna

pof

bdlqsh

nohtyj

d
mp

hcraesul

xedniul

yc
neiciffe evitale

R

Neutral

25%

50%

75%

Figure 8: Relative efficiency

In [29] the GC is auto-tuned in order to improve the per-
formance of a MapReduce Java implementation for multi-core
hardware. For each relevant benchmark, machine learning tech-
niques are used to find the best execution time for each combina-
tion of input size, heap size and number of threads in relation to
a given GC algorithm (i.e. serial, parallel or concurrent). Their
goal is to make a good decision about a GC policy when a new
MapReduce application arrives. The decision is made locally to
an instance of the JVM. The experiments we presented are also
related to memory management, but our definition of QoE (as
presented in Section 2) can go beyond this resource.

At the middleware level, Coulson et al. [10] present OpenCom,
a component model oriented to the design and implementation of
reconfigurable low-level systems software. OpenCom’s archi-
tecture is divided between the kernel and the extensions layers.
While the kernel is a static layer, capable of performing basic
operations (i.e. component loading and binding), the extensions
layer is a dynamic set of components tailored to the target envi-
ronment. These extensions can be reconfigured at runtime to, for
example, adapt the execution environment to the application’s
resource usage requisites. Our work handles mechanisms at a
lower level of abstraction.

Duran et al. [14] uses a thin high-level language virtual ma-
chine to virtualize CPU and network bandwidth. Their goal is
to provide an environment for resource management, that is,
resource allocation or adaptation. Applications targeting this
framework use a special purpose programming interface to spec-
ify reservations and adaptation strategies. When compared to
more heavyweight approaches like systemVMs, this lightweight
framework can adapt more efficiently for I/O intensive applica-
tions. The approach taken in Duran’s work bounds the applica-
tion to a given interface for resource adaptation. Although in our
system the application (or the libraries they use) can also impose
their own restrictions, the adaptation process is mainly driven
by the underlying virtual machine without direct intervention of
the applications.

7. CONCLUSIONS

In this paper, we described the ongoing research to design
a distributed execution environment, each executing an ex-
tended resource-aware runtime for a managed language, Java,
and where resources are allocated based on their effectiveness
for a given workload. We presented the architecture of QoE-
JVM which has the ability to monitor base mechanisms (e.g.
CPU, memory or network consumptions) in order to assess ap-
plication’s performance and reconfigure these mechanisms in
runtime.

Resource allocation and adaptation obeys to a VM economics
model, based on aiming overall quality-of-execution (QoE)
through resource efficiency. Our adaptation model, based on
the yield obtained from applying different strategies to each ten-
ant’s workload, aims at putting resources where they can do the
most good to applications and the cloud infrastructure provider,
while taking them from where they can do the least harm to
applications.

We presented the details of our adaptation mechanisms in
each VM (for heap size, and CPU allocation) and their met-
rics. We experimentally evaluated their benefits, showing re-
sources can be reverted among applications, from where they
hurt performance the least (higher yields in our metrics), to ten-
ants with higher priority or to applications with more require-
ments. The overall goal is to improve flexibility, control and
efficiency of infrastructures running long applications in clus-
ters.

Acknowledgments. This work was partially supported by
national funds through FCT — Fundação para a Ciência e
a Tecnologia, under projects PTDC/EIA-EIA/102250/2008,
PTDC/EIA-EIA/108963/2008, PTDC/EIA-EIA/113613/2009,
PEst-OE/EEI/LA0021/2013 and the PROTEC program of the
Polytechnic Institute of Lisbon (IPL).

vol 29 no 1 November 2013 71

ADAPTABILITY DRIVEN BY QUALITY OF EXECUTION IN HIGH LEVEL VIRTUAL MACHINES FOR SHARED CLOUD ENVIRONMENTS

REFERENCES

1. http://wiki.xensource.com/xenwiki/creditscheduler, visited at 31-
03-2011.

2. http://www.spec.org/jvm2008/, visited 17-11-2012.
3. B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,

P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes re-
search virtual machine project: building an open-source research
community. IBM Syst. J., 44:399–417, January 2005.

4. Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind,
and Peter F. Sweeney. A survey of adaptive optimization in virtual
machines. In Proceedings of the IEEE, 93(2), 2005. Special Issue
on Program Generation, Optimization, ans Adaptation, 2005.

5. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-
ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the art of virtualization. SIGOPS Oper. Syst. Rev., 37:164–
177, October 2003.

6. Sukadev Bhattiprolu, EricW. Biederman, Serge Hallyn, and Daniel
Lezcano. Virtual servers and checkpoint/restart in mainstream
linux. SIGOPS Oper. Syst. Rev., 42(5):104–113, July 2008.

7. Walter Binder, Jarle Hulaas, Philippe Moret, and Alex Villazón.
Platform-independent profiling in a virtual execution environment.
Softw. Pract. Exper., 39:47–79, January 2009.

8. Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,
B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas Van-
Drunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo
benchmarks: Java benchmarking development and analysis. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN con-
ference on Object-oriented programming systems, languages, and
applications, pages 169–190, New York, NY, USA, 2006. ACM.

9. C.W. Cobb and P.H. Douglas. A theory of production. The Amer-
ican Economic Review, 18(1):139–165, 1928.

10. Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar
Joolia, Kevin Lee, Jo Ueyama, and Thirunavukkarasu Sivaharan.
A generic component model for building systems software. ACM
Trans. Comput. Syst., 26:1:1–1:42, March 2008.

11. G. Czajkowski, M. Wegiel, L. Daynes, K. Palacz, M. Jordan,
G. Skinner, and C. Bryce. Resource management for clusters of
virtual machines. In Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid, CCGRID ’05,
pages 382–389, Washington, DC, USA, 2005. IEEE Computer
Society.

12. Grzegorz Czajkowski, Stephen Hahn, Glenn Skinner, Pete Soper,
and Ciarán Bryce. A resource management interface for the Java
platform. Softw. Pract. Exper., 35:123–157, February 2005.

13. Valéria Quadros dos Reis and Renato Cerqueira. Controlling pro-
cessing usage at user level: a way to make resource sharing more
flexible. Concurrency and Computation: Practice and Experience,
22(3):278–294, 2010.

14. H.A. Duran-Limon, M. Siller, G.S. Blair, A. Lopez, and J.F.
Lombera-Landa. Using lightweight virtual machines to achieve
resource adaptation in middleware. IET Software, 5(2):229–237,
2011.

15. N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frenot, and
B. Folliot. I-JVM: a Java Virtual Machine for component isolation
in OSGi. In IEEE/IFIP International Conference on Dependable
Systems & Networks, 2009.

16. Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. Press: Predictive
elastic resource scaling for cloud systems. In Network and Service

Management (CNSM), 2010 International Conference on, pages 9
–16, oct. 2010.

17. Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva,
Kyung Dong Ryu, and Muli Ben-Yehuda. Applications know best:
Performance-driven memory overcommit with ginkgo. In Cloud-
Com ’11: 3rd IEEE International Conference on Cloud Computing
Technology and Science, 2011.

18. Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Mis-
ailovic, Anant Agarwal, and Martin C. Rinard. Dynamic knobs for
responsive power-aware computing. In Rajiv Gupta and Todd C.
Mowry, editors, ASPLOS, pages 199–212. ACM, 2011.

19. Arkadiusz Janik and Krzysztof Zielinski. AAOP-based dynami-
cally reconfigurable monitoring system. Information & Software
Technology, 52(4r):380–396, 2010.

20. João Morais, João Nuno Silva, Paulo Ferreira, and Luís Veiga.
Transparent adaptation of e-science applications for parallel and
cycle-sharing infrastructures. In Distributed Applications and In-
teroperable Systems, volume 6723 of Lecture Notes in Computer
Science, pages 292–300. Springer Berlin Heidelberg, 2011.

21. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans. Auton. Adapt.
Syst., 4:14:1–14:42, May 2009.

22. Zhiyuan Shao, Hai Jin, and Yong Li. Virtual machine resource
management for high performance computing applications. Par-
allel and Distributed Processing with Applications, International
Symposium on, 0:137–144, 2009.

23. Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees
Shaikh. A cost-aware elasticity provisioning system for the cloud.
In Proceedings of the 2011 31st International Conference on Dis-
tributed Computing Systems, ICDCS ’11, pages 559–570, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

24. João Nuno Silva, LuísVeiga, and Paulo Ferreira. A2HA - automatic
and adaptive host allocation in utility computing for bag-of-tasks.
Journal of Internet Services and Applications, 2(2):171–185, 2011.

25. João Nuno Silva, Luís Veiga, and Paulo Ferreira. nuboinc: Boinc
extensions for community cycle sharing. In SASO Workshops,
pages 248–253. IEEE Computer Society, 2008.

26. José Simão, João Lemos, and Luís Veiga. A2-VM a cooperative
Java VM with support for resource-awareness and cluster-wide
thread scheduling. In Proceedings of the Confederated interna-
tional conference on On the move to meaningful internet systems,
OTM’11, pages 302–320. Springer-Verlag, 2011.

27. José Simão and Luís Veiga. A progress and profile-driven cloud-
vm for resource-efficiency and fairness in e-science environments.
In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, pages 357–362, NewYork, NY, USA, 2013.
ACM.

28. José Simão, Tiago Garrochinho, and Luís Veiga. A checkpointing-
enabled and resource-aware java virtual machine for efficient and
robust e-science applications in grid environments. Concurrency
and Computation: Practice and Experience, 24(13):1421–1442,
2012.

29. Jeremy Singer, George Kovoor, Gavin Brown, and Mikel Luján.
Garbage collection auto-tuning for java mapreduce on multi-cores.
In Proceedings of the International Symposium on Memory Man-
agement, ISMM’11, pages 109–118, New York, NY, USA, 2011.
ACM.

30. Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier,
and Larry Peterson. Container-based operating system virtual-
ization: a scalable, high-performance alternative to hypervisors.
SIGOPS Oper. Syst. Rev., 41(3):275–287, March 2007.

31. Carl A. Waldspurger. Memory resource management in vmware
esx server. SIGOPS Oper. Syst. Rev., 36:181–194, December 2002.

72 computer systems science & engineering

