In situ studies of NiTi and NiTiCu orthodontic wires

Patrícia Rodrigues^{1,2*}, Francisco Manuel Braz Fernandes¹, Edgar Camacho¹, Rafaela Magalhães¹

¹CENIMAT, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal, ²CEMMPRE, Mechanical Engineering Department, University of Coimbra, Coimbra, Portugal

* pf.rodrigues@campus.fct.unl.pt

Workshop on Shape Memory Alloys **Processing, Properties and Applications CENIMAT, FCT/UNL, 19/02/2020**

ABSTRACT

In this study, a class of NiTiCu orthodontic wires thermal activated was analyzed. This wire (CuNiTi Thermocopper NiTi - 35°C/Morelli) has 6%Cu. Microstructural characterization of the wire was performed using Differential Scanning Calorimetry (DSC), in situ synchrotronbased x-ray diffraction (SXRD) and three-point bend test was performed by TMA analysis in the temperature range (5 to 40 °C). This study provided a better understanding of the behavior of these wires.

EXPERIMENTAL DETAILS

DSC

CuNiTi Orthodontic Wire -Thermocooper - 35°C Morelli - 0.4 x 0.55mm

3-Point Flexion Test

Time (min)

Phase Transformation Temperatures.

Shynchrotron XRD

P07 High-Energy Materials Science (HEMS) of Petra III/DESY, Wavelength: 0.124 Å (98 keV) beam spot $200 \times 200 \ \mu\text{m}^2$ Samples scanned along the length of the wire 2D detector Mar345, at 1.5 m from the sample. Raw 2D images treated using Fit2D program by integration from 0° to 360° (azimuthal angle).

RESULTS AND DISCUSSION

Tensile Test

CONCLUSIONS

 \checkmark Af temperature is close 35°C. So, it is a suitable process in view of orthodontic application. \checkmark In Synchrotron XRD results it is possible to observe the different phases that occur during the tensile test. \checkmark It is possible to observe the precipitates TiCu and Ni₄Ti₃.

ACKNOWLEDGMENTS

MIDAS Micro and Nanoscale Design of **Thermally Actuating Systems**

۲

FACULDADE DE **CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA** DE LISBOA