
DEPARTMENT OF
COMPUTER SCIENCE

THALES VINÍCIUS ALVES PARREIRA

Bachelor of Science

EMPOWERING A RELATIONAL DATABASE
WITH LSD: LAZY STATE DETERMINATION

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2022

DEPARTMENT OF
COMPUTER SCIENCE

EMPOWERING A RELATIONAL DATABASE WITH LSD:
LAZY STATE DETERMINATION

THALES VINÍCIUS ALVES PARREIRA

Bachelor of Science

Adviser: João Lourenço
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2022

Empowering a Relational Database with LSD: Lazy State Determination

Copyright © Thales Vinícius Alves Parreira, NOVA School of Science and Technology,
NOVA University Lisbon.
The NOVA School of Science and Technology and the NOVA University Lisbon have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,
as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.5) [9].

https://github.com/joaomlourenco/novathesis

To my wife, mom and dad.

Acknowledgements

After completing a late bachelor degree, I have decided to continue with a masters in
Computer Science. This dissertation marks the end of this very long journey, that had
its ups, downs, failures, successes, starts, and stops. There were many times I imaged I
would stop studying and focus on my career, yet every time I continued I felt there was a
lot more to learn. Although the journey was not easy, I have grown fond of it, and I am
very grateful for the opportunity of having gone through it. It is because of this that I
express my gratitude to, not only those who have helped me in this dissertation, but also
in my bachelor degree.

First, I express my gratitude towards my advisor, João Lourenço. Thank you for
bringing me closer to the academic world, for always showing confidence in my work, by
inspiring and motivating me to keep on working hard. Above all, thank you for always
being available, striving for the best and for doing what I always felt was more than anyone
would expect.

To our special institution, NOVA School of Science and Technology, thank you for the
knowledge you have provided and all the personal growth you allowed me to have.

To my dear wife, a special thank you, for the endless support, motivation, and care
along this journey; with you this would have not been the same.

To my family, specially my mom and dad, who have given me this opportunity, thank
you for always supporting me, for all you have done, and for all you continue to do.

Last but not least, thank you, Tomás Pessanha, for accompanying along this journey,
for all the car sharing and for all the good and bad moments we have shared.

iv

“Do, or do not. There is not try.” (Yoda)

Abstract

Computer systems are a part of today’s most common activities and, more often than not,
involve some type of interaction with a database. In this scheme, databases play a big
role, where even small operational delays could cost millions to big tech companies. It is
then, of utmost importance that such systems are responsive and adapt automatically to
different types of workload.

To this date, Relational Database Management System (RDBMS) remain the most
popular database type, which allows the executing of concurrent transactions with Atom-
icity, Consistency, Isolation and Durability (ACID) guarantees. Enforcing such properties
requires strict control over the execution of transactions. However, maintaining such
properties and controlling the transactions’ concurrency may hamper performance of the
system, being this specially the case when database contention is high.

Motivated by such behavior, we propose the lazy evaluation of database SQL queries
(using Futures/Promises and Java Database Connectivity (JDBC)) by empowering a
relational database with Lazy State Determination (LSD). This novel Application Pro-
gramming Interface (API) allows delaying operations to the commit time, which in the end
reduces the transaction window where conflicts may occur.

We have observed that, by using LSD in a JDBC client, we are able to increase
throughput by 50% and reduce latency by 40% in high contention scenarios.

Keywords: Concurrency Control, Relational Databases, Lazy State Determination, Java
Database Connectivity, Transactions

vi

Resumo

Os sistemas informáticos são parte das atividades mais comuns na atualidade e, na maioria
das vezes, envolvem algum tipo de interação com uma base de dados. Neste cenário, as
bases de dados têm um grande papel, sendo que pequenos atrasos operacionais podem
custar milhões às grandes empresas tecnológicas.

Até os dias de hoje, os Sistemas de Gestão de Bases de Dados Relacionais (SGBDR)
continuam a ser o tipo de bases de dados mais popular, permitindo a execução concorrente
de transações garantindo as propriedades de Atomicidade, Consistência, Isolamento e
Durabilidade (ACID). A aplicação de tais propriedades requer um controlo rigoroso sobre
a execução de transações. No entanto, manter tais propriedades e controlar a concorrência
das transacções pode diminuir o desempenho do sistema, sendo especialmente o caso em
bases onde a contenção é elevada.

Motivados por este comportamento, nós propomos o atraso na execução de queries
SQL na base de dados (utilizando Futuros/Promessas e JDBC) empoderando a base de
dados com LSD. Esta nova API permite adiar as operações para o momento do commit, o
que acaba por reduzir a janela da transação onde conflitos podem ocorrer.

Observamos que, ao utilizar LSD em um cliente JDBC, nós conseguimos aumentar a
taxa de execução de transações em 50% e reduzir a latência em 40% num ambiente de
contenção elevada.

Palavras-chave: Controlo da Concorrência, Bases de Dados Relacionais, Lazy State Deter-
mination, Java Database Connectivity, Transacções

vii

Contents

List of Figures xi

List of Tables xii

Acronyms xiv

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem and Goals . 2
1.3 Approach and Contributions . 2
1.4 Outline . 3

2 Background and Related Work 4
2.1 Transactions . 4

2.1.1 Transaction Properties . 4
2.1.2 Serializability . 5

2.2 Concurrency in Databases . 7
2.2.1 Concurrency Control . 7
2.2.2 Different Take . 15

2.3 Lazy State Determination . 16
2.3.1 Overview . 16
2.3.2 Anatomy of a Future . 17
2.3.3 Operations . 17
2.3.4 The First Prototype . 20

3 An Introduction to JDBC 22
3.1 Overview . 22
3.2 Interfaces . 23

3.2.1 Connection . 24
3.2.2 Statement and PreparedStatement 25

viii

3.2.3 ResultSet . 25
3.2.4 Others . 26

3.3 An Example . 26

4 LSD Strategy 28
4.1 Properties . 28

4.1.1 Resolvability . 29
4.1.2 Immutability . 29
4.1.3 Encapsulation . 29

4.2 Future . 29

5 JDBC with LSD 31
5.1 Overview . 31
5.2 Interfaces . 31

5.2.1 Connection . 32
5.2.2 FutureStatement and PreparedFutureStatement 33
5.2.3 FutureResultSet . 34
5.2.4 FutureCondition . 35

5.3 Implementation . 35
5.3.1 FutureConnection . 36
5.3.2 FutureStatement and PreparedFutureStatement 36
5.3.3 FutureResultSet . 37
5.3.4 FutureCondition . 38
5.3.5 Others . 39

5.4 An Example . 39

6 Evaluation 42
6.1 Test setup . 42
6.2 Results . 43

6.2.1 High contention . 43
6.2.2 Low contention . 46

7 Conclusions 50
7.1 Summary and Conclusions . 50
7.2 Future Work . 50

Bibliography 52

Appendices

A The TPC-C Benchmark 55
A.1 Brief History . 55
A.2 The Company . 55

ix

A.3 The Benchmark . 57
A.4 YCSB, a Modern Alternative . 58

A.4.1 Workloads . 58

x

List of Figures

2.1 Two phase locking phases. 10
2.2 Execution scheme of STRIFE in a 4 core machine. 14
2.3 Two transactions and their execution windows, represented by the red arrows. 17
2.4 A comparison of traditional Structured Query Language (SQL) API and LSD

API. 19

3.1 Generalized architecture of an application interacting with databases using
JDBC API. 23

3.2 Diagram of the most relevant JDBC interfaces and their interactions. 24

5.1 An example visualization of the dependency graph that the commit needs to
resolve when executing a transaction using JDBC-LSD. 41

6.1 Throughput, latency, failures and transaction window after executing only the
New-Order transaction with high contention. 44

6.2 Throughput, latency, failures and transaction window after executing only the
Payment transaction with high contention. 45

6.3 Throughput, latency, failures and transaction window after executing all TPC-C
transactions with high contention. 46

6.4 Throughput, latency, failures and transaction window after executing only the
New-Order transaction with low contention. 47

6.5 Throughput, latency, failures and transaction window after executing only the
Payment transaction with low contention. 48

6.6 Throughput, latency, failures and transaction window after executing all TPC-C
transactions with low contention. 49

A.1 The Company business structure. 56
A.2 The Company database entities. 57

xi

List of Tables

2.1 Anomalies per isolation level. 6
2.2 Example of a serial, a non-serial serializable and a non-serial non-serializable

schedule. 8
2.3 Comparison between LSD and Traditional API. 18

A.1 Standard workloads present in the Yahoo! Cloud Serving Benchmark (YCSB). 59

xii

xiii

Acronyms

2PL Two Phase Lock (pp. 9, 12, 17, 19, 20)

ACID Atomicidade, Consistência, Isolamento e Durabilidade (p. vii)
ACID Atomicity, Consistency, Isolation and Durability (pp. vi, 2, 4, 5, 14–16)
API Application Programming Interface (pp. vi, vii, xi, xii, 2, 3, 16–26, 28, 31, 32, 35, 36,

39, 50, 51)
ATM Automated Teller Machine (p. 55)

BASE Basically Available, Soft-state, Eventually-consistent (pp. 14, 15)

CC Concurrency Control (pp. 1, 2, 7, 9, 11–17, 19, 51)

DBMS Database Management System (pp. 2, 5–7, 9, 58, 60)

GC Garbage Collector (p. 12)

JDBC Java Database Connectivity (pp. vi, vii, xi, 3, 20, 22–26, 28, 31, 32, 34–36, 39–51)
JVM Java virtual machine (p. 32)

LSD Lazy State Determination (pp. vi, vii, xi, xii, 2–4, 16–21, 23, 24, 28, 31, 32, 35, 36,
39–51)

MCC Modular Concurrency Control (p. 15)
MV2PL Multi-Version 2 Phase Lock (p. 12)
MVCC Multi-Version Concurrency Control (pp. 12, 13)
MVOCC Multi-Version Optimistic Concurrency Control (p. 12)

OCC Optimistic Concurrency Control (pp. 10–13, 17, 19)
ODBC Open Database Connectivity (p. 22)

xiv

OLTP Online Transaction Processing (p. 55)

RDBMS Relational Database Management System (pp. vi, 2–4, 20, 21, 31, 42, 50, 58)

SGBDR Sistemas de Gestão de Bases de Dados Relacionais (p. vii)
SQL Structured Query Language (pp. xi, 2, 19, 20, 23–25, 28, 31–34)

TID Transaction Id (p. 11)
TPC Transaction Processing Performance Council (p. 55)
TPC-C TPC Benchmark C (pp. 2, 11–13, 16, 42, 43, 45, 55–58, 60)

YCSB Yahoo! Cloud Serving Benchmark (pp. xii, 11–13, 55, 58–60)

xv

1

Introduction

1.1 Context and Motivation

Long has gone the era where single-threaded was the norm for computer systems. The
decades of exponential performance growth for single-threaded applications are gone,
and multithreaded architectures are ubiquitous in the current computer systems nowa-
days. With this in mind, techniques such as parallelism and concurrency have grown in
importance in order to fully exploit today’s multi-threading hardware capabilities.

When we think about today’s world of millions of people interacting on a daily basis
with multiple interconnected systems, where delays in milliseconds could cost millions to
big tech companies [1], it is of great importance that systems are adapted to be responsive
to many types of workload.

One thing that should be common in most of these systems is that, more often than
not, they involve some type of interaction with a database. For example, accessing an
online bank account, viewing a feed on Instagram 1, reserving an airline ticket, and even
the non-trivial cases such as browsing your web browser bookmarks might involve some
sort of database. These databases can range from memory fitting size to having to be
deployed in multiple data centers scattered around the world.

From the above, it is obvious that efficient processing of these databases is needed
and, as a consequence, fast execution of transactions is of great importance to any modern
system. Processing one transaction at a time won’t cut it, and employing parallelism is
necessary to speed up execution.

If a database’s single purpose would be for reading data, parallel execution would not
be an issue, as there was no way transactions would interfere with one another. However,
for most systems this is not the case, as the database serves both read-only and read-write
transactions. In this setting, employing parallelism in an uncontrolled mannerwould cause
data consistency to be lost. This is where Concurrency Control (CC) techniques come into
play, as they are responsible for ensuring the correct interactions of users on a multi-user
database system, that executes multiple read-write transactions concurrently. Different

1https://www.instagram.com/

1

https://www.instagram.com/

CHAPTER 1. INTRODUCTION

CC techniques have different kinds of impact in concurrent execution of transactions and
can generally be divided in two main classes, optimistic and pessimistic solutions.

The context of this dissertation relates with allowing a greater concurrent execution
of transactions. The following chapters will detail even further the followed approach for
achieving that.

1.2 Problem and Goals

Reasoning with database transactional systems is simplified by the Atomicity, Consistency,
Isolation and Durability (ACID) abstraction, where transactions appear to execute atom-
ically without interference, despite being executed concurrently. Maintaining a system
with such requirements requires strict control over the transactions execution and ways of
handling or preventing conflicts. CC techniques are what enable Database Management
System (DBMS) to maintain data consistency and isolation in concurrent environments.
Many proposals have been made to improve these techniques in high contention envi-
ronments, however, this dissertation will focus on reducing the chance of data conflicts,
hence reducing data contention.

This work will focus on Lazy State Determination (LSD) [22], which proposes to reduce
contention by decreasing the time window in which a transaction might conflict with one
another, hence, increasing concurrency between transactions. Vale [22] notes that a lack
of semantics in transactions leads to a conservative view of what is a transaction conflict.
The example of two transactions updating the number of items in an inventory is given,
where both transactions conflict due to both writing to the same tuple. However, provided
that aggregate effects are preserved, the semantic of the transactions do not conflict. It
was with this in mind that Lazy State Determination (LSD) was proposed.

The LSD Application Programming Interface (API) has already been tested successfully
in NoSQL context. However, it remains to be proven successful in a Relational Database
Management System (RDBMS) context. An initial prototype for RDBMS has already been
done by Subtil [18], but its performance failed to deliver similar results of NoSQL LSD
implementation.

1.3 Approach and Contributions

This dissertation plans to implement LSD for Structured Query Language (SQL) databases,
following the work done by Vale [22], where in that case LSD was tested in a NoSQL
database. To achieve this, we propose an approach to Vale [22] that relies solely on the
client side, allowing LSD to be used more easily in different databases. The solution we
came up was tested using a standard RDBMS test for databases, the TPC Benchmark C
(TPC-C) [19] benchmark, and achieved considerable improvements on high contention
environments, with close to no impact in low contention scenarios.

With this, our contributions are as follows:

2

1.4. OUTLINE

• A methodology for defining futures in an object-oriented setting and how to use
them to delay transaction execution;

• A new Java Database Connectivity (JDBC)-LSD API working as an extension of the
JDBC API;

• A JDBC-LSD driver compatible with all RDBMS databases that have a JDBC driver;

• A detailed approach on how to implement LSD in the client;

• A performance evaluation of having delayed operations solely in client.

1.4 Outline

The remainder of the document is organized as follows:

Chapter 2 — This chapter explores the basics of transactions and also visits relevant
related work to this dissertation. It also describes the approach followed by this
dissertation work, LSD;

Chapter 3 — This chapter gives an overview of the JDBC API;

Chapter 4 — This chapter looks into how to define a future and the properties it should
have;

Chapter 5 — This chapter defines the JDBC-LSD API by looking at its interfaces, imple-
mentation and giving an example;

Chapter 6 — This chapter focuses on presenting the results of the new JDBC-LSD API
when compared to the standard JDBC;

Chapter 7 — This is the final chapter which makes a summary of the work presented
in this document and gives guidelines to future work that will assist the solution
presented in this document to achieve even better results.

3

2

Background and Related Work

This Chapter introduces some base concepts for transactions, and presents relevant related
work on concurrency in databases.

Section 2.1 starts by defining a transaction and its desired properties. Subsection 2.2.1
studies current literature on concurrency inside databases. Finally, Section 2.3 studies
Lazy State Determination (LSD) [22], and Subtil [18] approach on LSD is contrasted with
the studied literature.

2.1 Transactions

More often than not, database operations appear as a single unit of work from the point of
view of the database user. For instance, a bank transfer from a savings account to a debit
account, to a database user appears as a single unit of work, while internally it should
involve more than one operation. This is what we call transactions and form the basis for
interactions with Relational Database Management System (RDBMS) systems.

2.1.1 Transaction Properties

In order to ensure data integrity, RDBMS require four important properties, know as
Atomicity, Consistency, Isolation and Durability (ACID) [17]:

Atomicity — a transaction is a single unit of work, it should be either executed in its
entirety or not executed at all;

Consistency — a transaction should preserve consistency, meaning it should take the
database from a consistent state to another consistent state after its execution;

Isolation — a transaction must execute independently of other transactions, meaning that
concurrent changes occurring in one transaction should not be visible to others until
they are committed; and

Consistency — all transactions changes must be permanent in the database and must not
be lost in case of failure.

4

2.1. TRANSACTIONS

As described previously, isolation is one of the foundations of transaction execution, it
also often the most relaxed propriety of Atomicity, Consistency, Isolation and Durability
(ACID), as maintaining the highest isolation level typically results in loss of concurrency
and lower throughput. In most commercial Database Management System (DBMS) it
is possible to fine tune isolation level, providing a balance between performance and
consistency.

The ANSI/SQL 92 refers to isolation with to three different phenomena in mind [2]:

Dirty read — a transaction is allowed to read uncommitted data from another executing
transaction;

Non-repeatable read — a transaction will read only committed data, but a row retrieved
more than once might differ between reads; and

Phantom read — these phenomena occurs when in the same transaction two identical
queries may return two sets of rows where one is the subset of another.

The ANSI/SQL-92 (and Berenson et al. [2]) defines four different isolation levels:

Serializable — the highest level which enables the output of concurrent transactions to
appear as being executed serially;

Repeatable read — transactions are guaranteed to only read committed data, and see the
same result if the same read operation is executed repeatedly;

Read committed — transactions are guaranteed to only see changes that have been com-
mitted; and

Read uncommitted — changes made by a concurrent transaction are visible by other
transactions (this is the lowest isolation level).

Table 2.1 relates each anomaly with each isolation level. Read uncommitted is the
weakest isolation level and consequently allows dirty reads, non-repeatable reads and
phantom writes. An improvement to read uncommitted is made with read committed
by ensuring that dirty reads do not occur, however, other anomalies are still present.
Non-repeatable reads and dirty reads are not present in repeatable read isolation level,
however, phantom reads may still occur. Finally, serializable, the strongest of isolation
levels, ensures that no anomalies occur.

2.1.2 Serializability

It is generally accepted that serializability is the strongest property and defines a standard
notion for correctness in DBMS [11]. Essentially, the execution of a group of transactions
is said to be serializable if the concurrent, and possibly interleaved, execution of the

5

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1: Anomalies per isolation level, as described in by Berenson et al. [2].

Isolation level Dirty read Non-repeatable read Phantom read

Repeatable read Possible Possible Possible
Read committed Not Possible Possible Possible
Repeatable read Not Possible Not Possible Possible
Serializable Not Possible Not Possible Not Possible

transactions has the same effect, and produces that same outcome as some serial execution
of the same transactions.

It is important to notice that no order for serial execution is specified, but rather that it
should be equivalent to some serial order. This simple notion gives DBMS added flexibility
when scheduling operations and may result in increased responsiveness of the system.

As an example, let’s imagine two concurrent users that want to increment a counter,
but need to first check its value. If both users retrieve the counter’s value before either one
of them updates it, the resulting sequence of execution, or schedule, is not serializable.
This is because the serial execution of both transactions would have resulted in smaller
than expected total increment. However, if any of the users updates the value before the
other reads it, then the resulting schedule would have been serializable.

In the following sections, we go into more detail on what is a serializable schedule.

2.1.2.1 Serializable Schedules

A schedule, or history, is an abstract model that describes the execution ordering of read
and write operations, for a set of transactions in a DBMS. More specifically, the literature
defines two types of schedules, serial and non-serial schedules [17].

A serial schedule is an ordering where each transaction is executed after another. There
is no interleaving of operations between transactions and consequently the performance
of the execution of such schedule is slower.

In non-serial schedules, transaction operations are allowed to be executed in an in-
terleaved manner. The overall ordering of operations within a transaction is always
maintained, however, other operations (from other transactions) may execute in between
a transaction. This gives the DBMS better opportunities for concurrent execution and
improved transaction throughput.

Table 2.2 shows an example of three schedules. Schedule a represents a serial schedule,
and in this case, transaction 𝑇1 is executed after transaction 𝑇2. Executing all operations
of 𝑇2 before 𝑇1 would still generate a serial schedule. Schedule b represents an equivalent
non-serial serializable execution of schedule a. It is equivalent because the outcome of the
operations is the same. This interleaving of operations in non-serial schedules however,
may result in an inconsistent state of the system, hence, it is important to find equivalent
schedules that are serializable. Table 2.2 has an example of a non-serial non-serializable

6

2.2. CONCURRENCY IN DATABASES

execution in schedule c. In this case the interleaving of operations is not equivalent to the
serial execution present in schedule a and will leave the database in an inconsistent state.

The concept of equivalence is introduced in order to provide a set of syntactic rules
for transforming a schedule to another that provides the same resulting effects. This is
important because it enables us to validate that a given is schedule is equivalent to serial
schedules, and consequently, will leave the database in a consistent state.

An important form of equivalence is conflict equivalence. A schedule is said to be conflict
equivalent to a serial execution if the operations contained in each one are the same, and
all pair of conflicting operations are ordered in the same way. Verifying that a schedule is
conflict serializable is done by analyzing two transactions to check if they access the same
item and if at least one of the transactions is doing a write operation. The outcome of such
analysis may then be modeled to a precedence graph and checked for cycles [17].

In practice, DBMS do not test for serializability of schedules and instead relies on
protocols, such as the Concurrency Control (CC), for ensuring serializability.

2.2 Concurrency in Databases

Given that this dissertation focus on improving transactions’ execution by leveraging
concurrent methods, it is important to revisit traditional methods and also study the state
of the art in order to reap the right benefits for this work.

2.2.1 Concurrency Control

Concurrency Control (CC) is the mechanism used to manage simultaneous operations
in a DBMS. It is what enables multiple transactions to execute concurrently without one
interfering with another, while ensuring that the system goes from a consistent state to
another. Along the years, many techniques have been studied and developed. Berenson
et al. [3] describes three generic approaches for designing CC algorithms:

Wait — conflicting actions of one transaction must wait until the other transaction is
completed;

Timestamp — transaction execution order is selected based on timestamps, where each
transaction is assigned a timestamp and conflicting actions are solved by timestamp
order; and

Rollback — if two transactions conflict, one is aborted and rolled back.

These three generic approaches form the basis for most algorithms and are employed
to today’s most common algorithms for CC.

The usage of such three generic approaches tend to lead to a categorization for the types
of CC available, namely, pessimistic and optimistic [10], in which the first one preemptively
locks database items while the later involve validating concurrent transactions at commit

7

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.2: Example of a serial, a non-serial serializable and a non-serial non-serializable
schedule. Schedule a represents a serial schedule. Operations of T2 may come before
T1 and the schedule would still be serial. Schedule b interleaves the operations of READ
and WRITE of A and B for both transactions and forms a non-serial serializable execution
of Schedule a. Schedule c represents a non-serial non-serializable schedule of a. It is
non-serializable because its operations would leave the database in an inconsistent state.

T1 T2
READ(A)
A = A - 50
WRITE(A)
READ(B)
B = B + 50
WRITE(B)
COMMIT

READ(A)
temp = A * 0.1
A = A - temp
WRITE(A)
READ(B)
B = B + temp
WRITE(B)
COMMIT

(a) Serial schedule.

T1 T2
READ(A)
A = A - 50
WRITE(A)

READ(A)
temp = A * 0.1
A = A - temp
WRITE(A)

READ(B)
B = B + 50
WRITE(B)
COMMIT

READ(B)
B = B + temp
WRITE(B)
COMMIT

(b) Non-serial serializable schedule.

T1 T2
READ(A)
A = A - 50

READ(A)
temp = A * 0.1
A = A - temp
WRITE(A)

WRITE(A)
READ(B)
B = B + 50

READ(B)
B = B + temp
WRITE(B)
COMMIT

WRITE(B)
COMMIT

(c) Non-serial non-serializable schedule.

8

2.2. CONCURRENCY IN DATABASES

time. In the following subsections, we detail some common pessimistic and optimistic
approaches, while also presenting recent work that use different techniques.

2.2.1.1 Pessimistic Concurrency Control

A simple yet thoughtful solution for conflicting transactions is to make transactions wait
for others to finish working with conflicting database items. To implement this, the DBMS
can provide locks on database items. Transactions will get a lock when working with the
database and keep it as long as it is used, and then release it after its usage is completed.
If the lock was already acquired by the other transaction, the transaction will wait for the
lock to become available. An optimization can be done to the locking by having two types
of locks:

Read-lock (or shared lock) — must be acquired when reading a database item. The item
is locked in shared mode, which allows other transactions that want to read the same
item to also acquire the lock; and

Write-lock (or exclusive lock) — most be acquired when writing a database item. The
item is locked in exclusive mode and blocks any other transaction trying to read or
write to the same item.

This concept is part of the CC algorithm Two Phase Lock (2PL) [5], and is further
expanded by ensuring that locks are acquired and released in two specific phases:

Growing Phase — locks are acquired, but no lock can be released; and

Shrinking Phase — locks are released, and no lock can be acquired.

Figure 2.1 demonstrates 2PL transaction phases. The lock point in the figure represents
the point from which no more locks can be acquired.

When all transaction follows the 2PL locking approach, the system is serializable [5],
and this happens because after a transaction completes the Growing Phase all other con-
flicting transactions will have to wait for it to finish.

Methods that rely heavily on locks may be susceptible to deadlocks, and this is the case
of 2PL. This occurs when two transactions wait for locking resources that each other own.
Three different techniques might be used for addressing this issue: prevention, detection
and avoidance [6].

Deadlock prevention works by having transaction locks tested beforehand. This
consists in checking that the lock the transaction is attempting to acquire will or not cause
a deadlock in the system. If it leads to a deadlock, the transaction is aborted and all the
pending operations are rolled back for the transaction to restart its operation. Otherwise,
the transaction is allowed to wait for the lock.

Deadlock detection uses wait-for-graph for detecting transaction deadlocks. Transac-
tions that are detected to be deadlocked are aborted and restarted. Transactions are set

9

CHAPTER 2. BACKGROUND AND RELATED WORK

Transac�on endTransac�on start

N
o.

 o
f L

oc
ks

 Acquire lock

Release lock

Lock point

Figure 2.1: Two phase locking phases. Source [3].

as graph vertexes and graph edges are defined based on the resources a transaction is
waiting from another transaction. Deadlocks are then detected by looking for cycles in
the wait-for-graph.

With respects to deadlock avoidance, this is achieved by having transactions declare
what resources they are going to acquire. The standard technique for this is to have
transactions to linearly order (or any other order) the resources and acquire them in that
order only.

2.2.1.2 Optimistic Concurrency Control

Another approach that differs from the locking methods presented in Subsubsection 2.2.1.1
is to assume that transactions don’t conflict that often, also known as an optimistic
solution. This is the approach followed by [7] in the Optimistic Concurrency Control
(OCC) mechanism. In this approach transactions are free to read and write, but the write
operations remain pending and, before committing, transactions have to validate that
their operations do not conflict with the operations from other concurrent transactions.
For this, the algorithm defines three important phases:

Read phase — transactions read database items and store local copies of them in a read
set;

Write phase — optional phase where transactions write locally to database items in a
private write set; and

Validation phase — atomically verifies that the records in the read set and write set were
not modified by other concurrent transactions. If no conflict is found, the pending

10

2.2. CONCURRENCY IN DATABASES

updates in the write set are applied and the transaction commits. If a conflict is found,
the read and write set are discarded, and the transaction is aborted and restarted.
A typical approach for deciding on the transaction to be aborted is to compare the
transactions timestamps, which are assigned at the start of each transaction.

Tu et al. [21] designed Silo, an in-memory database that uses an adapted version of
OCC for high performance workloads. The work centers around efficient memory usage
while ensuring great scalability for multicore systems in shared-memory databases, i.e.,
where the entire database is accessible to all database workers. Silo’s CC centers around
the usage of a unique Transaction Id (TID) for each transaction. A TID is a numeric word
that is used to identify transactions, record versions, serve as locks and detect conflicts.
Every record of Silo’s database is associated with the TID of the transaction that most
recently modified it.

Similar to OCC, Silo’s protocol works in three phases and uses local read and write
sets for validating transactions and storing local changes. The three phases are described
as follows:

Phase 1 — the database worker locks modified records and after that takes a snapshot a
global epoch number in order to ensure serializability between transactions;

Phase 2 — read records are examined to check for changes during the transaction execu-
tion. This is done with the records TID. If no changes is found, a TID is generated
for the running transaction; and

Phase 3 — writes new record values and updates their TID with phase 2 computed TID.
Releases acquired locks.

Another important feature of Silo’s CC is the usage of epochs, which enables the
protocol to enforce serializability. Epochs are also present within the numeric word TID
and are extracted from a global epoch number that governs the system and enables the
system to ensure serializability. More specifically, serializability is ensured by the fact
that:

• All written records are locked before validating TIDs;

• Locked records are treated as dirty and transactions are aborted upon encountering
them; and

• Snapshot of global epoch guarantees that the most recent version of requested items
is available to the running transaction

The authors of Silo validated their system against TPC Benchmark C (TPC-C) and
Yahoo! Cloud Serving Benchmark (YCSB). Results show close to linear scalability when
increasing the database worker thread count.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

TicToc [26], also based in OCC, builds upon research on poor scalability of current
timestamp generation methods and proposes a novel data-driven timestamp management
protocol. In this protocol, data items are assigned a read and write timestamp, which are
then used by the protocol to lazily compute a valid timestamp for each transaction.

The protocol distributes assignment of timestamps, leading to a better scalability of
the generation algorithm. Additionally, this also removes the need of having a global cen-
tralized mechanism for generating timestamps for transactions, which leads to improved
performance.

Another key feature of TicToc, is the fact that it lazily assigns timestamps. This is
relevant because it gives a greater flexibility when compared with statical timestamp
assignment which then forces a fixed order of execution of transactions. Schedules that
would potentially not be allowed by general OCC methods can potentially execute under
TicToc. An example of this would be:

1. A read(x)

2. B write(x)

3. B commits

4. A write(y)

This interleaving of operations would be allowed in TicToc, but not in OCC. This is
because Transaction B has modified x and hence A would fail in the validation step.

TicToc was validated against YCSB and TPC-C benchmarks and was reported to achieve
great performance, even when compared with state-of-the-art OCC algorithms such as
Silo [21].

2.2.1.3 Multi-Version Concurrency Control

Another important CC mechanism is the Multi-Version Concurrency Control (MVCC) and
is widely used today in commercial databases. It’s implementation varies from vendor
to vendor (Oracle, Postgres, MS SQL Server, etc.) [23] but they revolve around the idea
of having multiple versions of each database tuple. Wu et al. [23] describes some flavors
in detail, but the most widely used commercially involve modifications to the original
OCC and 2PL in the form of Multi-Version Optimistic Concurrency Control (MVOCC)
and Multi-Version 2 Phase Lock (MV2PL).

Independently of the implementation, some key aspects of the MVCC are the usage
of unique monotonically incrementing timestamps for determining the version of tuples
each transaction uses, the increase in storage due to added need to store multiple versions
of the same tuple, and the need for having Garbage Collector (GC) for pruning versions
that are no longer needed.

12

2.2. CONCURRENCY IN DATABASES

Cicada [8], by Lim, Kaminsky, and Andersen, is a single node multicore transactional
in-memory database that leverages MVCC and OCC. It employs several optimizations to
both CC algorithms in order to achieve top of class performance.

In Cicada, transaction timestamps are assigned at the beginning of the transaction
and are used to decide which records version shall be used. These are obtained via
loosely synchronized software clocks, a multi-clock design thought to alleviate issues
with original MVCC timestamp generation. Each thread is responsible for generating its
thread transaction timestamp, and special optimizations are made so that clocks between
threads are close to synchronized.

Since this is a MVCC based protocol, Cicada stores multiple versions of records
using the best effort inlining, a method for reducing allocation of new version records.
Additionally, and for each record version, read and write timestamps are stored for later
transaction validation.

Optimizations are also done to the validation step of the protocol.

1. Sort of write set based on contention in order to reduce footprint of following steps
in case of abort;

2. Early consistency checks validation after sorting write set for contention; and

3. Incremental version search in order to reduce cost when validating versions times-
tamps against the read set.

Contention is also a target of study by Lim, Kaminsky, and Andersen. A mechanism
based of backoff is proposed in order to alleviate contention caused by aborts of OCC
transactions. This mechanism forces aborted transactions to sleep before restarting its
work. Adjustments over the backoff value are made overtime based on system contention
and throughput.

Cicada evaluates its performance withTPC-C andYCSB benchmarks. Results show that
Cicada outperforms or matches the performance of state-of-the-art in-memory databases
such as Silo or TicToc in various workloads.

2.2.1.4 Other Approaches

In this section, we study different CC approaches that move away to from the traditional
methods of pessimistic and optimistic CC by approaching the problem in different ways
in order to increase throughput.

In order to improve performance in high contention environments, Prasaad, Cheung,
and Suciu [12] propose STRIFE, a new CC algorithm that leverages insights on the
transaction accessed data in order to optimize its scheduling and execution. This is done
by dividing transactions into batches of clusters and a set of residuals. Optimization
here comes from the fact that inter-cluster wise, transactions are allowed to execute in a
conflict-free manner without the usage of any CC algorithm. Transactions that do not fit

13

CHAPTER 2. BACKGROUND AND RELATED WORK

Time

C1

C2

C3

C4

One Batch

Analysis Conflict-Free Residual

Figure 1: Execution Scheme of S����� on 4 cores

Figure 2: Access Graph of a TPC-C transactions
The execution scheme of S����� is shown in Figure 1. A

batch of transactions is executed in three phases: ������
���, ������������� and �������� phase. First, the batch of
transactions is analyzed and partitioned into a number of
con�ict-free clusters and a small residual. Each con�ict-free
cluster is then executed without any concurrency control in
parallel on all cores in the ������������� phase. After all
clusters have �nished execution, the residual transactions
are executed on multiple cores with conventional concur-
rency control.1 Once a batch is completed, S����� repeats by
analyzing the next batch.

We next give an overview of each of the three phases using
an example workload.

2.1 �������� phase
The goal of the �������� phase is to partition the batch of
transactions into clusters such that any two transactions
from two di�erent clusters are con�ict-free. We explain the
details next.

To partition a batch of transactions, we �rst represent
them using a data access graph. A data access graph is an
undirected bipartite graph A = (B [O, E), where B is the
set of transactions in the batch, O is the set of all data items
(e.g., tuples or tables) accessed by transactions in B, and the
edges E contain all pairs (T ,d) where transactionT accesses
1As mentioned in Section 1, the residuals can be executed serially on a
single core as well, although our experiments have shown that executing
using multiple cores with concurrency control is a better strategy.

data item d . Two transactions T ,T 0 are said to be in con�ict
if they access a common data item and at least one of them
is a write.

For example, Figure 2 depicts the access graph of a batch
of transactions from TPC-C benchmark. A new-order trans-
action simulates a customer order for approximately ten
di�erent items. The example in Figure 2 contains three dif-
ferent warehousesw1,w2 andw3. Each warehouse maintains
stock for a number of di�erent items in the catalog.

As shown in the �gure, transactions {T1, . . . ,T12} access
data items from di�erent tables in the TPC-C database. T1,
for example, writes to the warehouse tuple w1 and a few
other tuples from other tables such as district and stock
that belong to w1 as well. Transactions T1,T2 are in con�ict
because they both access w1; whereas transactions T1,T5 are
not. The batch shown in Figure 2, is said to be partitionable
as groups of transactions access disjoint sets of data items.
It can be partitioned into three clusters that do not con�ict
with each other, and the clusters can be executed in parallel
with each one scheduled on a di�erent core.

However, real workloads contain outliers that access data
items from multiple clusters. Consider the example shown
in Figure 3(a), again of TPC-Cnew-order transactions. Here,
transactionsT4 andT8 order items from multiple warehouses,
resulting in a con�ict withT2 andT10 respectively. There are
two ways to executeT4 andT8: either merge the two clusters
thatT2 andT10 belong to and assign the resulting cluster to be
executed on a single core, or move T4 and T8 into a separate
cluster to be executed afterwards. As the former might result
in a single large cluster that takes signi�cant amount of time
to execute, we take the latter approach where we consider
T4 and T8 as residuals. This results in the remaining batch
partitioned into three con�ict-free clusters along with the
residuals, as shown in Figure 3(b).

A clustering is a partition of transactions B into k + 1 sets
{C1,C2, . . . ,Ck ,R} such that, for any i , j and any transac-
tion T 2 Ci ,T

0 2 Cj , T , T 0 are not in con�ict. Notice that
no requirement is placed on the residuals R. The data access
graph does not distinguish between read and write access,
because S����� considers only data items for which there is
at least one write by a transaction. Consequently, if any two
transactions that access the same common item d are placed
in two distinct clusters, then at least one of them will have a
write con�ict with some other transaction, hence we do not
need to consider the type of access to the data items.

During the ������������� phase, each cluster Ci is exe-
cuted on one dedicated core without any concurrency control
between cores. After all clusters have �nished, then, during
the �������� phase, the residual transactions are executed,
still concurrently, but with conventional concurrency control
applied. Ideally, we want k to be at least as large as the num-
ber of cores to exploit parallelism at maximum during the

3

Figure 2.2: Execution scheme of STRIFE in 4 core machine. Source [12].

in said clusters, due to conflicting with other transactions, are grouped into what is called
a residual set and executed with traditional CC solutions. Prasaad, Cheung, and Suciu
describes three-phase for the algorithm:

Analysis phase — batches incoming transactions and models them into an undirected
bipartite graph of data accesses. This allows STRIFE to know which transactions
conflict with one another and to decide on the clustering to select. Transactions that
interact with data present in multiple clusters are grouped into the residuals set.

Conflict-free phase — schedules clusters execution on multiple execution threads. Each
execution thread gets a cluster and executes it. Transactions that belong to the same
cluster are executed serially. Isolation is guaranteed since clusters are conflict-free.

Residual phase — transactions that do not fall under the conflict-free clusters are executed
on this phase. Its execution is concurrent on all available execution threads, but are
managed by traditional CC mechanisms.

The above phases are grouped into batches and delivered for execution to each core in
the machine. Figure 2.2 demonstrates the execution of such batches in a 4 core machine.
First there is an analysis phase in each core, it executes the conflict-free phase as already
described and finally executes the residual phase. The process is then repeated.

Differently from what has been done by Prasaad, Cheung, and Suciu [12], Xie et al. [25]
approach the problem from a different perspective motivated by the Pareto principle.
They note that for many applications, there are few transactions that test the performance
limits of ACID. In parallel, they refer to the widely adopted in NoSQL databases Basically
Available, Soft-state, Eventually-consistent (BASE) [13], which by loosening requirements
in terms of consistency and isolation allows higher a throughput. It is with this in mind
that they propose the concept of BASE transactions. An abstraction that loosens the
requirements of isolation and consistency in order to achieve greater performance.

The BASE transaction abstraction works by enabling ACID transactions to be decom-
posed into multiple nested transactions, called alkaline subtractions, that run at BASE

14

2.2. CONCURRENCY IN DATABASES

level. ACID transactions can still be present, and its guarantees are still present even
when interacting with other ACID or BASE transactions. For this to work, the Salt Isolation
property is established. This property makes use of three different types of locks to achieve
isolation:

Saline locks — ensures isolation between ACID and BASE transactions, while at the same
time allows for increased concurrency by allowing transactions to view intermediate
states;

Alkaline locks — ensures isolation between alkaline subtractions and ACID transactions;
and

ACID locks — strongest and traditional ACID write and read locks.

Referring back to the mentioned Pareto’s principle, they show that not all transactions
need to be converted to BASE transactions. This is specially highlighted by their results,
in which with the conversion of only two ACID transactions to BASE transactions, they
were able to achieve a great improvement over throughput.

Another interesting approach that shares some authors of Xie et al. [25] is Callas [24].
This work builds upon what was demonstrated with Salt’s methodology of partitioning
transactions into sub-transactions by automating it through complex static analyzes and an
iterative process for finding good transaction decomposition. Additionally, and similarly
to what was done in STRIFE [13], Callas automatically groups and assigns each transaction
group its own CC mechanism.

Callas achieves its desired properties through the usage of a novel CC algorithm called
Modular Concurrency Control (MCC) and by applying chopping techniques (Shasha
et al. [15]) for improved concurrency within transaction groups.

As described by Xie et al., MCC aims to “decouple the abstraction from the mechanism”,
i.e., separate ACID the abstraction from its implementation, and it does so by allowing
transactions to be partitioned into different groups while also enabling each group to be
assigned its own optimized CC mechanism. MCC also ensures isolation within groups
and intra-groupings through the usage of a purposely developed nexus locks.

2.2.2 Different Take

A different take from what has been described for CC is the scheduling of transactions
execution to the processor cores in in-memory databases. Sheng et al. [16] speculate
that it is possible to increase throughput of transaction execution and reducing abort
rate of transactions by analyzing the patterns of the transactions abort. In their work,
two distinct machines learning based approach are proposed for doing that. One that
uses supervised machine learning and another one that uses unsupervised machine
learning [16, Section 1.3]. The first computes for transactions pairs probability of abort,
while the second groups transactions that are likely to abort into the same group for

15

CHAPTER 2. BACKGROUND AND RELATED WORK

execution. Transactions are then scheduled into multiple processors cores in order to
obtain a greater degree of concurrency. Their work show improvement on transaction
throughput in the TPC-C benchmark, providing preliminary evidence that in-memory
databases could benefit for such approach.

2.3 Lazy State Determination

Reasoning with transactional systems is simplified by the ACID abstraction, where trans-
actions appear to execute atomically without interference, despite being executed concur-
rently. A transaction that involves transferring money from one bank account to another
will most likely involve multiple records that do not get updated atomically, even though
the ACID abstraction entails that. A CC system would ensure that such transaction could
run in parallel with others, while also ensuring that an inconsistent state is not visible to
others. It is also the job of the CC to ensure the maximum throughput is achieved when
transactions are running in parallel. However, when met with contention, CC systems
lose performance. This happens mainly due to the fact that conflicting transactions tend
to execute sequentially.

2.3.1 Overview

Typical CC systems can only make conservative assumptions on what a transaction is doing.
If two transactions conflict, they will most likely need their execution to be synchronized.
For example, two transactions that increase the available balance of the same bank account
would conflict because they would be writing to the same database tuple. However,
provided that the aggregate effects of both transactions is preserved, we could view them
as non-conflicting.

To better understanding this issue, we may think about a transaction as having an
execution window, which starts when the transaction makes its first query or update to
the database and ends when the transaction commits. Figure 2.3 has a representation of
the mentioned analogy. Transaction 1 starts by reading the stock value for a determined
item, and then proceeds to updated it if above a certain value. Transaction 2 does a direct
update to the stock value of the same item. The conflict window between two transactions
is then defined by the intersection of their execution windows. There is a possible conflict
when such conflict window is not empty.

From this observation, results that, if we decrease the size of a transaction windows
we also decrease the conflicting window, which will increase the probability of successful
commits and improve database throughput. It is based on this insight that Vale proposes
Lazy State Determination (LSD) [22], a transactional Application Programming Interface
(API) for conveying semantics to the database while improving concurrency and ensuring
serializability of operations. For doing this, LSD converts traditional transactional API to
be lazily evaluated and changes its operations to return futures instead of concrete values.

16

2.3. LAZY STATE DETERMINATION

 begin
 v ← read(stock)
 if v > 0
 v ← v - 1
 write(stock, v)
 end
 commit

(a) Transaction that updates the stock
by decrementing it a certain amount.

 begin
 v ← 50
 write(stock, v)
 commit

(b) Transaction that updates the stock
value to 50.

Figure 2.3: Two transactions and their execution windows, represented by the red arrows.

2.3.2 Anatomy of a Future

A future, also known as Promise, is an abstraction used to refer to a proxy of a value that,
as the name implies, will only be available at a future time. In its original form, futures
encapsulate asynchronous tasks and their result. In doing so, it provides means for having
deferred computations, allowing programs to create a future and only retrieving its result
when needed. It is based on this abstraction that LSD transactions execute, with a change
that the futures are not asynchronous.

A key insight from LSD is that, in general, transactions do not need to know the
concrete state in which the database is for executing transactions, they only need to
provide semantics on how to execute the transaction. Hence, LSD operations can be
defined as something to be eventually executed, i.e., a future. In particular, LSD defers
execution for commit time in order to allow for more concurrency.

In the end, what happens is that the amount of time transactions need to be in isolation
is reduced. Isolation is still ensured at commit time.

2.3.3 Operations

LSD transactions operate in the typical client-server transactional model. In this model,
clients issue traditional transaction commands such as BEGIN and COMMIT to, respec-
tively, start and commit a transaction. The Traditional transactional API is evaluated
immediately and so, returns concrete results, which is not compatible with LSD require-
ments of returning lazy objects, i.e., futures. This forces LSD to have its own API for
transactions. Hence, clients that wish to reap the benefits of lazy evaluation must use
LSD specific API. On the other hand, the database must also be compatible with said API.
To this end, LSD changes the behavior of both 2PL and OCC CC protocols. It is to note
that the client may still need to use the traditional API, however, the benefits of delayed
execution and short isolation periods will not be present in such operations.

LSD operations are implemented as follows:

17

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.3: Comparison between LSD and Traditional API. □ and Δ denote futures.

Operation LSD API Traditional API

BEGIN Starts a new transaction Same
READ(key)→ □ Returns a future□ held by key

key
Returns a value held by key
key

READ(Δ)→ □ Returns a future □ held by fu-
ture key Δ

Not compatible

WRITE(key, X) Not present Writes the value X held by key
WRITE(key, □) Writes the future value of □

into value held by key
Not compatible

WRITE(Δ,□) Writes the future value of □
into value held by future key
Δ

Not compatible

IS-TRUE(□)→boolean Conditional checks for future
□

Not compatible

COMMIT→boolean Commits transaction Same
ABORT Aborts transaction Same

READ(key)→ □ — Returns to the client using LSD a future □, an opaque representation
of the actual value held by key. From the database perspective, the future is known
and resolvable. From the client perspective, it only knows the opaque representation
of the future. Hence, other interactions with the database that need □ value need to
use it as is, and the database will decide if and how to resolve it. The database on
the other hand promises to lazily resolve it when needed.

READ(Δ)→ □ — Returns a future □ held by future key Δ. This operation is similar to
READ(key)→ □, however, in this case, Δ future value needs to be resolved before
returning future □. This is in order to avoid having "futures of futures".

WRITE(key, □) — Writes the future value □ to value held by key. From the application
perspective, it is as if the operation has executed in the database and the value has
been updated. On the other hand, from the database perspective this is an indication
of an operation to be executed, not necessarily an immediate execution. The value
of □will only be resolved in the commit phase and, hence, the write operation will
only take place at commit time as well.

WRITE(Δ,□) — Writes the future value □ to value held by future key Δ. This operation is
similar WRITE(key, □), however in this case the key is also a future, and consequently
Δ needs to also be resolved in the commit phase (before □).

IS-TRUE(□)→boolean — Conditional check for future □. This operation allows transac-
tions to operate based on concrete database states. As was the case for other LSD
transactions, it does not expose the database state to the transaction. The idea here

18

2.3. LAZY STATE DETERMINATION

is to expose an abstract state instead of the concrete state. This allows for more
concurrency and safeguards isolation because this operation is only executed in the
commit phase, after □ is resolved.

COMMIT→boolean — Resolves all futures generated along the transaction execution
and, if the transaction validation succeeds, commits to the database.

Table 2.3 compares LSD API with traditional Structured Query Language (SQL) API.
Apart from the BEGIN, ABORT and COMMIT which remain the same, all other operations
are excluded from LSD API.

For better understanding the LSD API, please refer to Figure 2.4, where we compare
the general structure of a real transaction under LSD to the traditional API. In particular,
this example models a simplified view of a transaction that decreases the stock number
of an item in a warehouse. Note that the general structure remains unchanged when
converting from a traditional to the LSD API.

1 begin
2 v← read(stock)
3 if v ≥ qty
4 v← v − qty
5 write(stock, v)
6 commit
7 else
8 abort
9 end if

(a) A transaction under traditional transac-
tional API

1 begin
2 □← read(stock)
3 if is−true({□ ≥ qty})
4 Δ← {□ − qty}
5 write(stock, Δ)
6 commit
7 else
8 abort
9 end if

(b) A transaction under LSD API.

Figure 2.4: A comparison of traditional SQL API and LSD API.

As already mentioned, LSD also forces changes in the CC mechanism of the database.
These are required in order to allow the database to create futures and resolve them at a
later time. LSD changes OCC and 2PL similarly, but each has its own nuances in terms of
implementation.

In general, both CC protocols require the addition of future reads, future writes and future
conditions sets. These are for holding unresolved reads, unresolved writes and unresolved
conditions respectively. The original read and write set are maintained, as the LSD API
still allows for traditional API usage.

In case of OCC, where each record has a version associated with it, the protocol for
commit works as follows:

1. Lock tuples in the write set;

2. Resolve and lock tuples in the future read and future write set;

3. Verification that tuples in the read set haven’t changed in the meantime. If an item
has changed, the transaction is aborted and moves to step 6.;

19

CHAPTER 2. BACKGROUND AND RELATED WORK

4. Resolves and validates conditions in the future condition set. If condition returns
false, the transaction is aborted and moves to step 6;

5. Update tuples with final value;

6. Unlocks locked tuples.

2PL on the other hand, requires locks to be acquired when records are accessed. Read-
locks and write-locks are still acquired by LSD implementation, however, most may be
lazily evaluated in the commit phase. Although most of the locks may be deferred to
the commit phase, there is still some cases where this might not be feasible. This is the
particular case of the READ(Δ)→ □ and IS-TRUE(□)→boolean operations. For the first
one, LSD avoids having "futures of futures", so Δ is resolved immediately and locked. In
the case of IS-TRUE operation, a new concept of locks is established, a conditional lock. In a
sense, conditional locks introduce the required semantics for allowing readers and writers
more flexibility over the aggregate effects two or more transactions would have. This is
done by having two more types of locks:

Read condition lock — Installs a condition □ to the item at hand. This happens when an
IS-TRUE operation is issued.

Write value lock — Acquired by transactions that wish to update a locked item with a
new value. This value must respect all read condition locks imposed on it, otherwise
it blocks and waits for other transactions to finish.

2.3.4 The First Prototype

The work of Vale [22] focused on the implementation and validation of LSD in a NoSQL
database called RocksDB [14]. Subtil [18] continued on his work by proposing a prototype
implementation leveraging the Java Database Connectivity (JDBC) API to add futures.

This was the first attempt at using futures in a RDBMS context, and it did so by
focusing on the client that is interacting with the database where the proposal was to
implement the futures by extending the SQL language with new SQL directives, namely,
SELECT_LSD, INSERT_LSD, UPDATE_LSD and DELETE_LSD opposing the well known SELECT,
INSERT, UPDATE and DELETE.

This solution, however, proved unsuccessful as it led to additional steps when parsing
a SQL statement, which in the end added time to the total execution time of the SQL
statements.

Overall, the idea was that LSD insights can still be leveraged when we look only at
the client side. Lazily evaluating queries can still reduce database latency and reduce
contention in the database. This happens because the client code may continue execution
and only get the results when needed. Additionally, this approach takes the problem
from another angle and, in doing so, it leaves open the possibility of combining reviewed

20

2.3. LAZY STATE DETERMINATION

methods such as Silo [21], TicToc [26] Cicada [8] with the aim at optimizing the database
functioning. Finally, this can also be seen as the first step to introducing the LSD to a
RDBMS, since we still require some sort of API to interact with a database that uses LSD.

21

3

An Introduction to JDBC

This chapter provides an overview and highlights the main interfaces present in Java
Database Connectivity (JDBC) Application Programming Interface (API).

3.1 Overview

The Java Database Connectivity (JDBC) is an API provided to Java applications that
allow them to interact with database systems. The API defines a set of Java interfaces
that encapsulate database functionality such as executing database queries, updating or
inserting data, or even managing configuration information. To applications that need to
interact with the database, only this high level interface is provided, while internally, each
database vendor must implement the specifics for communicating and/or translations
required to communicate with the database. Although the driver implementation is
database specific and may depend on the variety of systems and hardware where Java is
present, all JDBC drivers fall into one of the following categories:

Type 1 — JDBC-Open Database Connectivity (ODBC) bridge, is a type of driver it internally
converts JDBC calls to ODBC calls. This driver is platform dependent since it uses
ODBC which in turn depends on native libraries. It is not supported from Java 8,
but it is still widely used to this date;

Type 2 — Native API, is a type of driver that is partially written in Java that relies on the
native database API libraries to make database calls;

Type 3 — Network Protocol, is a type of driver that is written in Java and that relies on a
network middleware to make database calls; This means that the driver will make a
call to the middleware first, which will then make the database specific translations
and make the call to the actual database;

Type 4 — Database Protocol, is a type of driver that is written in Java and uses the database
protocol for communicating. It is the most widely used type of driver.

22

3.2. INTERFACES

Application

JDBC API

Database driver Database driver Database driver

PostgreSQL SQL Server MySql

Figure 3.1: Generalized architecture of an application interacting with databases using
JDBC API.

Figure 3.1 provides an overview of an application interaction with a database using the
JDBC API. The application interacts with the API which then interfaces that interaction
into the specific JDBC driver.

3.2 Interfaces

Standardizing database access requires a strict definition of the JDBC API, meaning that
a clear separation between the database driver and the API must exist. This allows to
have a vendor neutral API that allows multiple databases to be accessible via a single
common interface. The API defines a big set of interfaces that may be used by a client
when accessing a database or vendor when implementing a database driver. For brevity,
we focus on the ones that were most relevant to the Lazy State Determination (LSD) work.
These are listed below:

Driver — The interface used by the JDBC DriverManager to create connections to a
database;

DriverManager — The interface used by the application to find the desired JDBC driver;

Connection — The representation of a real connection to a database;

Statement — This interface represents a static Structured Query Language (SQL) query
which is executable in the database;

PreparedStatement — An extension to the Statement interface that adds parameters
support, batching of SQL operations and statement caching in the database;

23

CHAPTER 3. AN INTRODUCTION TO JDBC

getDriver(name: String)

connect()

«interface»
Driver

execute()
«interface»

PreparedStatement

execute()

«interface»
Statement

«interface»
ResultSet

createStatement()

prepareStatement(sql: String)

«interface»
Connec�on

DriverManager

Figure 3.2: Diagram of the most relevant JDBC interfaces and their interactions.

ResultSet — The representation of the results that are returned by the database on a SQL
query execution.

Figure 3.2 shows a diagram with the mentioned interfaces and their interact with each
other.

In the following subsections we go into more detail on theConnection, thePreparedStatment
and the ResultSet interfaces. These are the ones that incurred the most changes after
introducing the LSD API, hence, are the ones that required most of our attention.

3.2.1 Connection

As the name implies, the Connection interface holds the actual connection to the database.
It allows interaction with the database by providing methods for creating database state-
ments. The most relevant methods are listed below:

createStatement(): Statement — Creates a SQL query object represented by the inter-
face of Statement;

prepareStatement(sql: String): PreparedStatement — Creates a SQL query object
represented by the interface of PreparedStatement. Takes as parameter the SQL
query;

setAutoCommit(autoCommit: Boolean) — Configures the intended commit behavior for
the Connection. Takes as value a boolean which, when set to true will force the
Connection to automatically commit to the database on every statement execution,
and when set to false will force the Connection to only commit on an explicit
commit() call;

commit() — Commits all executed statements to the database;

rollback() — Rolls back all executed transactions if auto commit is turned off.

24

3.2. INTERFACES

3.2.2 Statement and PreparedStatement

The Statement and PreparedStatement are the interfaces that hold the actual SQL state-
ment that is to be executed. Both interfaces support any type of SQL statement, with
the difference being the fact that the PreparedStatement supports parameters while
Statement does not. This makes the first one a better fit for dynamic statements (i.e.
parametrized) to the database.

The two interfaces share a common set of features, with the most relevant being the
support for batching of operations. This feature allows the client to execute multiple
statements with a single hop happening between the client and database.

The most relevantmethods that support the features ofStatement andPreparedStatement
are as follows:

addBatch() — Adds the current set of parameters to an internal list of parameters;

clearBatch() — Clears the list of parameters that the statement has;

executeBatch(): IntArray — Loads all the sets of parameters internal to the statement,
forming multiple SQL queries, and then executes all of them in one hop to the
database. It returns the number of affected tuples in the database;

executeQuery(): ResultSet — Executes the statement in the database and returns a
ResultSetwith the statement results;

executeUpdate(): Int — Executes an update or insert in the database and returns an
integer representing the result of the operation. A positive value is returned if the
statement execution affected any tuple, or 0 if no tuple was affected.

The support for parameters is done by setters’ method in the PreparedStatement
interface. Setters depend on the type we want to set, and for brevity, below we only
describe the setIntmethod, as many setters exist depending on the data type.

setInt(parameterIndex: Int, v: Int) — Sets the parameterwith indexparameterIndex
to value v. The parameter is set in the current list of parameters and is then affected
to the query when the statement is executed.

3.2.3 ResultSet

The ResultSet is created after the execution of executeQuery() of a statement, and is a
wrapper of the results returned by SQL select query.

This interface is intended to work as an iterator of the results, with each item in the
iterator being a row. Each row is then divided by columns, which are accessible via getter
methods. Since we may want different data types, the interface defines a method for every
data type supported by the JDBC API.

The most relevant methods that support this interface are the following:

25

CHAPTER 3. AN INTRODUCTION TO JDBC

next(): Boolean — Advances to the next row in the results and returns a boolean indi-
cating if there are more items in the ResultSet or not;

getInt(columnLabel: String): Int — This is an example of a getter method present
in the ResultSet. This method returns the currently positioned row in the ResultSet
from the column with label columnLabel. An equivalent getter using column
indexes is also available with getInt(columnIndex: Int): Int. Other getters exist
for different types of data;

3.2.4 Others

There are many other interfaces that support the JDBC API, such as the DriverManager
and the Driver. The DriverManager is responsible for first the correct Driver based on
the connection URI and then to return a connection to the database (the API Connection),
while the Driver is responsible for creating the actual database connection based on
the connection URI it gets from the DriverManager. The connection URI used by both
interfaces is in the form of 𝑗𝑑𝑏𝑐 :< 𝑣𝑒𝑛𝑑𝑜𝑟 >: //< 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 >, where < 𝑣𝑒𝑛𝑑𝑜𝑟 > is the
database vendor and < 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 > is the URL of the database.

Other interfaces also exist, but they are not relevant for the work present in this
dissertation.

3.3 An Example

Recalling all the interfaces presented in the previous sections, we provide an example
(Listing 3.1) of a transaction that uses JDBC and Kotlin 1 to decrement the stock number
of an item in the database. The first step (line 1) is to create a connection using the
DriverManager, which internally uses the database specificDriver to create the connection.
The connection is then used to create a PreparedStatement (lines 3–4) that is used to
retrieve the stock of item with id of 1. The PreparedStatement is then executed (line 6–7)
to get the stock value via a ResultSet. The ResultSet is then used as a parameter to a
final update query that decrements the stock value of item with id of 1 (lines 9–15).

Listing 3.1: JDBC transaction for updating the stock number of item 1 in the a database.
1 va l connec t i on = Dr iverManager . ge tConnec t i on ("jdbc:postgresql://localhost/database")
2
3 va l s tockS ta tement = connec t i on . prepareS ta tement ("SELECT stock FROM items
4 WHERE id = 1 FOR UPDATE")
5
6 va l r e s u l t S e t = s tockS ta tement . executeQuery ()
7 r e s u l t S e t . next ()
8
9 va l updateS tock = connec t i on . prepareS ta tement ("UPDATE items

10 SET stock = ? - 1

11 WHERE id = 1")

1https://kotlinlang.org/

26

https://kotlinlang.org/

3.3. AN EXAMPLE

12
13 updateS tock . s e t I n t (1 , r e s u l t S e t . g e t I n t (1))
14
15 updateS tock . executeUpdate ()
16
17 connec t i on . commit ()

27

4

LSD Strategy

Extending a database with Lazy State Determination (LSD) requires adapting the client
to handle futures it may receive as response from any Structured Query Language (SQL)
statement. In this chapter we focus on the strategy used to represent a future as well as
the desired properties we need futures to respect. We also go into detail on a solution
implemented using the Java Database Connectivity (JDBC) Application Programming
Interface (API).

4.1 Properties

A typicaloperation in a database has immediate effects when executed. Reasoning with this
is easy, as the state is immediately affected. This type of workflow being straightforward
to understand programmers. However, a future is not an immediate operation, nor
an asynchronous or parallel execution, it is the delay of the operation to commit time.
Extending any client with non-immediate operations, such as, asynchronous and parallel
execution, is a non-trivial task that takes a tool on the readability of computer programs.
This is particular relevant when we think about futures as being independent of the
programming language and database. So, one of our goals is to represent futures in such a
way that, little to no readability impact is felt when using Lazy State Determination (LSD).
To achieve such goal, we define some properties that must followed when representing
futures. The properties are listed below:

Resolvability — A future may be computed, or resolved, at any time by anyone;

Immutability — Resolving a future yields the same result;

Encapsulation — A future has all the information it needs.

In the next subsections, we go into more detail over each property here defined, and
its implications.

28

4.2. FUTURE

4.1.1 Resolvability

As the name implies, the resolvability property means that the future must be resolvable.
Moreover, the future must be resolvable by anyone who needs it at any time. This property
allows a future A that depends on future B to resolve future B. This gives flexibility by
allowing the creation of dependencies between futures. These dependencies can then be
chained between different futures, creating a dependency graph.

4.1.2 Immutability

The immutability property states that the value returned by a future, when executed,
should always be the same. This property is here in order to ensure that the same state is
seen along the program execution.

4.1.3 Encapsulation

The encapsulation property ensures that a future knows to resolve itself. This includes
knowing the dependencies it has and how to resolve them, and also know to execute the
operation it was defined to execute. Meeting this property ensures transparency to the
programmer, as it hides complexity and dependencies the future may have.

4.2 Future

Defining the desired future properties gives us a clear representation of what a future
should look like. Listing 4.1 shows a representation of a future. We define that a future has
always a function (𝑓 𝑢𝑛 in the listing) that captures the operation to execute, an optional
list of dependencies (𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 in the listing) and a result (𝑟𝑒𝑠𝑢𝑙𝑡 in the listing) for
storing the outcome of the operation when executed. It should also have a single function
to resolve the value of the future.

Listing 4.1: The representation of a future.
1 c l a s s Future
2 member :
3 dependenc ie s <− [Fu ture]
4 f un <− funct ion ()
5 r e s u l t <− empty
6
7 funct ion :
8 r e s o l v e () : V

The algorithm for resolving a future is simple and is captured in algorithm 1 by
the 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 function. First, the algorithm starts by checking if the future was already
computed by looking at the value of the 𝑟𝑒𝑠𝑢𝑙𝑡 member. When the value is not 𝑒𝑚𝑝𝑡𝑦, it
returns the value of the 𝑟𝑒𝑠𝑢𝑙𝑡. When the value of the result is 𝑒𝑚𝑝𝑡𝑦, it iterates over each
dependency it has and then resolves them. After resolving all dependencies it executes

29

CHAPTER 4. LSD STRATEGY

the future operation 𝑓 𝑢𝑛, stores the result in the 𝑟𝑒𝑠𝑢𝑙𝑡 member and then returns the
𝑟𝑒𝑠𝑢𝑙𝑡 value.

Algorithm 1: Algorithm for the computation of the value of a future.
members :dependencies: [𝐹𝑢𝑡𝑢𝑟𝑒], fun: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛, result: 𝑉
output :The value of the future
function resolve(): V is

if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑒𝑚𝑝𝑡𝑦 then
foreach 𝑑← 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 do

𝑑.𝑟𝑒𝑠𝑜𝑙𝑣𝑒()
end
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑓 𝑢𝑛()

end
return 𝑟𝑒𝑠𝑢𝑙𝑡

end

Going back to the properties presented in Section 4.1 and cross-checking them with
the future representation, we can see that:

Resolvability — Ensured by the function resolvepresent in the future and dependencies
member;

Immutability — Ensured by the function resolve and member result;

Encapsulation — Ensured by a single function resolve, which is all we need to execute.

30

5

JDBC with LSD

This chapter focuses on the adaptations that were done to Java Database Connectivity
(JDBC) to add support for the Lazy State Determination (LSD) Application Programming
Interface (API).

5.1 Overview

The most obvious way of adding LSD to the client API would be to modify the database
driver to support lazy operations. This would be the ideal, however, would mean that
a lot of effort would be required for normalizing usage of LSD on multiple Relational
Database Management System (RDBMS). To avoid such scenario, we started with the goal
of creating a LSD interface that would abstract all LSD operations and would serve as a
middleware for a real database driver. This enables LSD to be paired with any RDBMS
database driver without changes to their specific code. To achieve this, we define an
extended JDBC API with LSD support that meets the properties defined in Section 4.1.
The extended API defines a new set of interfaces and methods that allows the Connection
to return new a types of Statement and PreparedStatement that supports futures; the
PreparedStatements to support future parameters and, on its execution, to return a new
type of ResultSet that supports futures; the ResultSet to, on a getter call, to return future
values. Defining and implementing such interfaces, means creating a Type 3 (Section 3.1,
page 22) JDBC driver where the middleware is local to the client.

We aimed at supporting all Structured Query Language (SQL) operations available in
the JDBC API while maintaining interoperability with the original interfaces. Over the
course of the next sections we will review each of the interfaces and go into it detail over
its implementation.

5.2 Interfaces

In this section we give an overview of the interfaces used to implement LSD API into
JDBC. The details of the interfaces here presented use Kotlin syntax for better comparison

31

CHAPTER 5. JDBC WITH LSD

with the JDBC. However, this needs not to be the case as the JDBC-LSD API could have
been implemented in any Java virtual machine (JVM) based language. Moreover, other
non-JVM languages that do not have JDBC, have a similar database interaction model,
which makes the details here present, work as a guideline for other languages ports.

Before diving into how those interfaces were extended, we first focus on how to
represent a future. The Future interface is presented in Listing 5.1. This interface is
simple, yet powerful, as it serves as basis for other interfaces of the extended JDBC API.
The resolvemethod computes the value of the future. Its return value is dependent on
the class that implements it. The disposemethod is responsible for doing any clean-up
the future deems necessary.

Listing 5.1: The representation of a Future in Kotlin syntax.
1 i n te r f ace Future <T> {
2 fun r e s o l v e () : T
3 fun d i s p o s e ()
4 }

Besides defining the interface that allows future execution, we also defined an interface
called ResultChain with the goal of allowing the programmer to process the results of
operations. The idea here is that, after the future execution we should be able to do
something based on the future results, this gives the ability to programmer to log results,
emit messages or event abort the entire transaction. The interface is presented in Listing 5.2.
There we define a single method, that takes a Consumer 1 as parameter, where the parameter
is a function that will execute something on the value that it takes.

Listing 5.2: The representation of a ResultChain in Kotlin syntax.
1 i n te r face Resu l tCha in <T> {
2 fun then (f u n c t i o n : Consumer<T>)
3 }

5.2.1 Connection

The Connection interface is the starting point for creating SQL queries statement objects.
This is done via the createStatement and prepareStatement (Chapter 3) methods. As
these are regular statements that will not be lazily executed, we need to extend the
Connection to have new methods that return statements capable of being lazily evaluated.
To achieve this, we defined a new interface with name FutureConnection that extends
the Connection interface, so that standard JDBC operations are still available.

Listing 5.3: The representation of a FutureConnection in Kotlin syntax.
1 i n te r f ace FutureConnec t i on : Connect ion {
2 fun c rea teFu tu reS ta temen t () : Fu tureS ta tement
3
4 fun prepareFu tureS ta tement (s q l : S t r i n g) : P reparedFutureS ta tement

1https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html

32

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html

5.2. INTERFACES

5 }

The FutureConnection interface is presented in Listing 5.3. This interface defines two
new methods, the prepareFutureStatement and the createFutureStatement. The first
one creates an object of type FutureStatement, an extension of the Statement interface,
that enable lazy execution of the statement. The second one creates an object of type
PreparedFutureStatement, an extension of the PreparedStatement interface, that sup-
ports lazy executions and future parameters. Going back to the example presented in
Listing 5.9 the method, prepareFutureStatement (line 4 and 9) is used to create a future
statement.

5.2.2 FutureStatement and PreparedFutureStatement

The Statement and PreparedStatement interfaces are what hold the actual SQL query
and what allow their execution. These statements execute, upon request, the queries
immediately, so we define a decorator interface over these statements in order to add
lazy execution. With this in mind, we derive two new interfaces, FutureStatement and
PreparedFutureStatement.

Listing 5.4: The representation of a FutureStatement in Kotlin syntax.
1 i n te r f ace FutureS ta tement : Statement , Future <Any> {
2 fun executeFutureQuery () : F u t u r e R e s u l t S e t
3
4 fun executeFutureUpdate () : Re su l tCha in < In t >
5
6 fun addFutureBatch (s q l : S t r i n g)
7
8 fun executeFutureBatch () : Re su l tCha in < I n tA r ray >
9

10 overr ide fun r e s o l v e () : Any
11 }

Listing 5.4 demonstrates the FutureStatement interface. This extends the Statement
by adding four new methods, the executeFutureQuery, the executeFutureUpdate, the
addFutureBatch and the executeFutureBatch, and it also implements the Future in-
terface previously explained in Section 5.1. The executeFutureQuery (line 2) has the
responsibility of defining that the operation to execute is a query and for creating a
FutureResultSet. The addFutureBatch (line 6) adds a SQL statement to the list of batch-
ing operations. The executeFutureUpdate (line 8) defines that the operation to execute
is an update to the database and returns a ResultChain. The final method (line 10)
represents the resolution, or execution, of the actual Statement, be it a regular or batching
operation.

Listing 5.5: The representation of a PreparedFutureStatement in Kotlin syntax. For
brevity only a few setters are show here, but the PreparedFutureStatement supports the
same setters as the ones provided by PreparedStatement.

33

CHAPTER 5. JDBC WITH LSD

1 i n te r f ace PreparedFutureS ta tement : PreparedStatement , Fu tureS ta tement {
2 fun s e t F u t u r e I n t (parameter Index : In t , x : Future < In t >)
3
4 fun se tFu tu reDoub l e (parameter Index : In t , x : Future <Double >)
5
6 fun s e t F u t u r e F l o a t (parameter Index : In t , x : Future <Float >)
7
8 fun s e t F u t u r e S t r i n g (parameter Index : In t , x : Future < S t r i ng >)
9

10 fun s e t F u t u r e O b j e c t (parameter Index : In t , x : Future <Any>)
11
12 fun setFutureT imestamp (parameter Index : In t , x : Future <Timestamp >)
13
14 fun addFutureBatch () : Re su l tCha in < I n tA r ray >
15 }

Listing 5.5 shows the interface we used for defining the PreparedFutureStatement.
This interface extends both the PreparedStatement and the FutureStatement by adding
severalnew parametersetters to support future parameters. TheFutureStatementmethod
addFutureBatch in this interface is ignored in favor of a new one that takes no parameters.
This happens because this interface represents a template of a SQL statement.

5.2.3 FutureResultSet

The JDBC ResultSet gets the results immediately after a Statement executeQuery execu-
tion. This is not the case for the FutureStatements defined in Subsection 5.2.2. Hence,
we defined a FutureResultSet with added methods that are aware that the future it was
originated from may not yet have been resolved. For this we present the interface shown
in Listing 5.6. The interface extends three other interfaces, a Future, a ResultChain and
a ResultSet. The first one defines the interface as a Future so that it can be resolved
(line 14) by other futures, the second one allows for defining a then (line 16) chain after
the future is resolved, and, the final one gives us interoperability with JDBC ResultSet.
With respect to the methods it has, it defines alternatives to the original JDBC getters, with
its various getFutures.

Listing 5.6: The representation of a FutureResultSet in Kotlin syntax. For brevity only a
few getter are show here, but the FutureResultSet supports the same getters as the ones
provided by ResultSet.

1 i n te r f ace F u t u r e R e s u l t S e t : Future < R e s u l t S e t > , Resu l tCha in < R e s u l t S e t > , R e s u l t S e t {
2 fun g e t F u t u r e I n t (co lumnIndex : I n t) : Future < In t >
3
4 fun ge tFu tu reDoub le (co lumnIndex : I n t) : Future <Double>
5
6 fun g e t F u t u r e F l o a t (co lumnIndex : I n t) : Future <Float >
7
8 fun g e t F u t u r e S t r i n g (co lumnIndex : I n t) : Future < S t r i ng >
9

10 fun ge t Fu tu r eOb j e c t (co lumnIndex : I n t) : Future <Any>
11
12 fun getFutureTimestamp (co lumnIndex : I n t) : Future <Timestamp>

34

5.3. IMPLEMENTATION

13
14 overr ide fun r e s o l v e () : R e s u l t S e t
15
16 overr ide fun then (f u n c t i o n : Consumer< R e s u l t S e t >)
17 }

5.2.4 FutureCondition

Maintaining expressiveness of operations was also taken in consideration by the LSD API.
One may need to branch the program execution based on a condition. This aspect is cap-
tured by the 𝐼𝑆−𝑇𝑅𝑈𝐸(□) → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 operation and is translated into our JDBC-LSD API
using the FutureCondition interface. The responsibility of creating FutureConditions
is given to the FutureConnection interface via the isTruemethod. Listing 5.7 details the
signatures used to define the behavior of 𝐼𝑆 − 𝑇𝑅𝑈𝐸. The first isTrue method takes a
function that returns a boolean value as parameter. The second isTruemethod extends
the first one by allowing a combination of multiple function parameters in the form of an
Invariant. An Invariant here acts as a logical evaluation of multiple functions using
the logical operators and and or. The two methods are only evaluated at commit time.

Listing 5.7: Implementation of the 𝐼𝑆 − 𝑇𝑅𝑈𝐸 API into the FutureConnection in Kotlin
syntax.

1 i n te r f ace FutureConnec t i on : Connect ion {
2 fun i s T r u e (c o n d i t i o n : () −> Boolean) : F u t u r e C o n d i t i o n
3
4 fun i s T r u e (c o n d i t i o n : I n v a r i a n t) : F u t u r e C o n d i t i o n
5 }

Listing 5.8: The representation of a FutureCondition in Kotlin syntax.
1 i n te r f ace F u t u r e C o n d i t i o n : Future <Boolean > {
2 fun whenTrue (f u t u r e : () −> Unit) : F u t u r e C o n d i t i o n
3
4 fun whenFa l se (f u t u r e : () −> Unit) : F u t u r e C o n d i t i o n
5
6 fun r e s o l v e () : Boo lean
7 }

Listing 5.8 shows the FutureCondition interface definition. This interface represents
the future value of the condition and defines the behavior it should take after knowing
the condition value. The resolve method takes care of evaluating the condition and
executing a follow-up function. This action is defined by the function parameters that
whenTrue and whenFalse take.

5.3 Implementation

Previous sections gave a high level overview on how the several interfaces interact to form
a transaction execution under the LSD API, however, there are some details we believe are

35

CHAPTER 5. JDBC WITH LSD

important in order to fully understand this work. The details of the interfaces presented
before used Kotlin syntax for better comparison with the JDBC API, but for this section,
this needs not be the case, as we want to concentrate on the algorithms we used to support
those interfaces.

All the interfaces were implemented using the decorator programming pattern. This
allowed, not only to extend the API to support futures, but also to keep existing API
functionality. Using this strategy leads us to have, every JDBC-LSD interface with internal
backing JDBC counterpart. This means that, the FutureConnection has an internal
Connection, the PreparedFutureStatement has an internal PreparedStatement, and,
the FutureResultSet has an internal ResultSet.

5.3.1 FutureConnection

The whole idea around the LSD revolves around having operations being delayed to
commit time. This is achieved by having the FutureConnection creating and storing
the futures to execute. With that, the FutureConnection is then able to resolve all
futures. Algorithm 2 highlights the steps for executing the commit operation. First and
before executing this operation, futures and connectionmust be available. The first one
represents the FutureConnection stored futures, while the second one represents a real
connection to the database. The execution is then to, first resolves all futures and then to
execute the actual commit to the database.

Algorithm 2: The FutureConnection algorithm for executing a commit to the
database.
members : futures: [𝐹𝑢𝑡𝑢𝑟𝑒], connection: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

function commit() is
foreach 𝑓 ← 𝑓 𝑢𝑡𝑢𝑟𝑒𝑠 do

𝑓 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒()
end
connection.commit()

end

5.3.2 FutureStatement and PreparedFutureStatement

In order to support futures in the FutureStatement and PreparedFutureStatement, we
have to enable these interfaces to store the operation that they will eventually execute,
and more specifically for PreparedFutureStatement, to store a list of future parame-
ters it will eventually set. Executing a future query or setting a future parameter in
a PreparedFutureStatement, from the programmers’ perspective, is similar to execut-
ing a regular query or setting a regular parameter. Internally, however, there is a big
difference. For both cases, there are some requirements that a FutureStatement and

36

5.3. IMPLEMENTATION

PreparedFutureStatement must fulfil. We expect that the implementation of these in-
terfaces to have available a backing Statement (statement), as described in Section 3.2,
an executable function, in this case another future (future), and a store with all the
dependencies it has (futureParameters), as defined for a future in Subsection 2.3.2.

For the scenario where we want to set a future parameter, the algorithm is described
in Algorithm 3. As the first step of the algorithm, we start by creating a future for setting
the value. This future is implemented by a function that will set and resolve the value of
the future parameter in the backing statement (statement). After creating the future, we
add it to the list of future parameters.

Algorithm 3: The PreparedFutureStatement algorithm for setting a future parameter.
members :statement: 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, future: 𝐹𝑢𝑡𝑢𝑟𝑒, futureParameters: [𝐹𝑢𝑡𝑢𝑟𝑒]
function setValue(parameter, futureValue) is

future = createFuture(() → {
statement.setValue(parameter, futureValue.resolve())

})
futureParameters.add(future)

end

For the scenario where we want to execute a future query, the algorithm is described
in Algorithm 4. The algorithm starts by creating a function that will, execute the intended
operation, which in this case is executeQuery. It finishes by returning a FutureResultSet
that will have a reference to the function that will generate the actual result.

Algorithm 4: The PreparedFutureStatement algorithm for executing a future query.
members :statement: 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, future: 𝐹𝑢𝑡𝑢𝑟𝑒, futureParameters: [𝐹𝑢𝑡𝑢𝑟𝑒]
function executeFutureQuery(): FutureResultSet is

future = createFuture(() → {
statement.executeQuery()

})
return futureResultSet(future)

end

Finally, and after defining the parameters and operations to execute, we look at the
resolve algorithm for the PreparedFutureStatement in Algorithm 5.

5.3.3 FutureResultSet

The ResultSet, as was the case with the other interfaces, needs to store additional
information to support futures. This is achieved by having the FutureResultSet to store
a reference to the FutureStatement that generated it. This allows the FutureResultSet
to, when needed, execute the resolve of the FutureStatement. This is precisely what
happens when we try to get a future value and algorithm 6 describes that. First, we create

37

CHAPTER 5. JDBC WITH LSD

Algorithm 5: ThePreparedFutureStatement algorithm forresolving its dependencies
and executing the actual operation to the database.

members :statement: 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, future: 𝐹𝑢𝑡𝑢𝑟𝑒, futureParameters: [𝐹𝑢𝑡𝑢𝑟𝑒]
function resolve() is

foreach 𝑓 ← 𝑓 𝑢𝑡𝑢𝑟𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do
𝑓 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒()

end
return future.resolve()

end

a new future that is implemented by a function that will resolve the FutureResultSet’s
futureStatement and then get the actual value from the real ResultSet. After that, we
return the future for the value we were looking for.

Algorithm 6: The FutureResultSet algorithm for getting a future value from a
ResultSet.

members : futureStatement: 𝐹𝑢𝑡𝑢𝑟𝑒, result: 𝑅𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡
function getValue(column): Future is

future = createFuture(() → {
resolve()
return result.getValue(column)

})
return future

end

As for the resolve of the FutureResultSet, this is demonstrated in algorithm 7. The
implementation is very simple, first checks if it has resolved the futureStatement before
by checking if the result is empty. If it is empty, it will call the futureStatement resolve.
After that, it returns the real ResultSet.

Algorithm 7: The FutureResultSet algorithm for resolving to a ResultSet.
members : future: 𝐹𝑢𝑡𝑢𝑟𝑒, result: 𝑅𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡
function resolve() is

if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑒𝑚𝑝𝑡𝑦 then
result = futureStatement.resolve()

end
return result

end

5.3.4 FutureCondition

Branching code execution is essential when programming, and this is supported with the
FutureCondition. To achieve this, the FutureConnection interface provides the isTrue
method that takes a function that returns a boolean as parameter. This function, is the basis

38

5.4. AN EXAMPLE

for the FutureCondition as it is inside it that the programmer may resolve any future it
needs and then return the boolean result. The methods of whenTrue and whenFalse define
the branches to follow by taking both as parameters a function. These functions are then
members of FutureCondition implementation and allow the branching execution. The
resolvemethod is responsible for doing this with its algorithm present in Algorithm 8.

Algorithm 8: Algorithm for resolving the results of a FutureResultSet.
members :conditionFunction: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛, trueFunction: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛, falseFunction:

𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛

function resolve() is
result = conditionFunction()
if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒 then

trueFunction()
else

falseFunction()
end

end

5.3.5 Others

One interface that required specific adaptation for the JDBC-LSD was the Driver. In order
to wrap the Connection with a FutureConnection we defined that we should wrap the
database connection URI. Doing, allows us to not only to decorate the Connection with
future support, but also takes us to a state where we support any other database that
supports JDBC. The connection URI we chose is in the form of 𝑗𝑑𝑏𝑐 : 𝑙𝑠𝑑 :< 𝑣𝑒𝑛𝑑𝑜𝑟 >:
//< 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 >. This specific connection URI will only match the JDBC-LSD Driver,
which after matched will remove the 𝑙𝑠𝑑 : from the URI and then search for the actual
database driver.

5.4 An Example

Serving as a demonstration of the JDBC-LSD API, Listing 5.9 presents an adaptation of
the transaction present in Listing 3.1.

Listing 5.9: JDBC-LSD transaction for updating the stock number of item 1 in a database.
1 va l connec t i on = Dr iverManager
2 . g e tConnec t i on ("jdbc:lsd:postgresql://localhost/database")
3
4 va l s tockS ta tement = connec t i on . p repareFu tureS ta tement ("SELECT stock FROM items
5 WHERE id = 1 FOR UPDATE")
6
7 va l f u t u r e R e s u l t S e t = s tockS ta tement . executeFutureQuery ()
8
9 va l updateS tock = connec t i on . p repareFutureS ta tement ("UPDATE items SET stock = ? - 1

10 WHERE id = 1")

39

CHAPTER 5. JDBC WITH LSD

11
12 va l f u t u r e S t o c k V a l u e = f u t u r e R e s u l t S e t . g e t F u t u r e I n t (1)
13
14 updateS tock . s e t F u t u r e I n t (1 , f u t u r e S t o c k V a l u e)
15
16 updateS tock . executeFutureUpdate ()
17
18 connec t i on . commit ()

The example starts by retrieving a FutureConnection (line 1) from the DriverManager.
This FutureConnection is then used to create a PreparedFutureStatement (line 4–5) for
finding the stock of item 1. The PreparedFutureStatement is then used for creating a
FutureResultSet that will create a future for the stock of the item (line 7). After creating
the FutureResultSet, the FutureConnection creates another PreparedFutureStatement
(line 9–10) fordecrementing the stock value (line 16) of the item. Before setting up the future
to update the stock of the item, we first create a future (line 12), from the FutureResultSet,
with the future value of the stock. This is followed by setting (line 14) the future parameter
of the future stock update with the value of the future item stock. Finally, and after
setting up all the futures to execute, the FutureConnection resolves all the futures it holds
(line 18) and then commits (line 18) the outcome to the database.

The execution of this transaction creates a graph of future dependencies that is
highlighted in Figure 5.1. As can be seen in the figure, each node represents a JDBC-
LSD and JDBC interface. The edges are numbered and are created by the interactions
each interface has with one another. So, starting from the FutureConnection in the
graph, and referring to the transaction in Listing 5.9, we know that we must resolve two
PreparedFutureStatements, the FutureStockQuery and the FutureStockUpdate. The
first one to resolve (edge 1) is the FutureStockQuery since the FutureStockUpdate de-
pends on its value (line 14 in Listing 5.9). Since this is a future, we need to execute its resolve
operation (edge 2), which will execute the actual query to the database. After resolving the
FutureStockQuery stock value, the commit will resolve the FutureStockUpdate (edge 5).
For that, the FutureStockUpdatewill resolve its dependencies, namely setting the stock
value in the statement (edge 6). This, however, triggers a new resolve call (edge 7) to the
StockQuery to get the actual stock value. After setting the stock value parameter of the
update statement, the FutureStockUpdatewill execute the update statement. Finally, the
FutureConnectionwill commit to the database.

40

5.4. AN EXAMPLE

Future
Connection

Future
Stock
Query

Stock
query

Future
Stock

Update

Future
Stock
value

Stock
Update

1

2

5

6 10

3
9 117

4 12

8

Commit

Future Statement resolve

Future Parameter set

Statement execution

Figure 5.1: An example visualization of the dependency graph that the commit needs
to resolve when executing a transaction using JDBC-LSD, more specifically, Listing 5.9.
The edges in the graph have a numbered label that indicates execution order. The nodes
represent a single JDBC-LSD and JDBC interface generated from the transaction execution.
Finally, each node is color coded with the operation that triggers the edge creation.

41

6

Evaluation

In this chapter, we elaborate on the testing environment we used for validating our work,
the tests that we performed and the results we obtained.

6.1 Test setup

The chosen Relational Database Management System (RDBMS) for validating our work
was the PostgreSQL 1. This database was chosen because of its popularity and it being
an Open Source database 2. Other databases are also supported, since the Java Database
Connectivity (JDBC)-Lazy State Determination (LSD) driver is database agnostic, allowing
it to function with any database that has a JDBC implementation.

The tests were conducted in the NOVA LINCS Cluster in a distributed fashion across
six different interconnected nodes, all running Debian 11. One of the nodes took the
responsibility of executing the PostgreSQL database while the others acted as test workers
executing queries in the database. The node that handled the database had as specification
an AMD EPYC 7281@2.7GHz 16 Cores, 128 GB of RAM. As for the worker nodes, they all
had the same specifications, each with 2× AMD Opteron 2376 CPU@2.30GHz and 16 GB
of RAM. The database and worker nodes were connected via 1 Gbps network connections.

In regard to the test candidates, these were the standard JDBC driver for PostgreSQL
with version 42.3.3 and the newly implemented JDBC-LSD driver. Both candidates were
evaluated using a standard test for RDBMS, the TPC-C (Appendix A) benchmark.

The TPC Benchmark C (TPC-C) benchmark is particularly helpful because on the one
hand, it captures the entire set of interfaces that were presented in the Chapter 5, and on
the other hand, it enables us to control the contention level we want for a test. For the
first one, the two core transactions of the benchmark, New-Order and Payment, are able
to capture samples of reads, writes and execution branching. For the latter, the ability to
control the desired contention is done via the number of warehouses (see Appendix A
for more details) the benchmark uses. More specifically, by reducing the number of

1https://www.postgresql.org/
2https://opensource.org/licenses/PostgreSQL

42

https://www.postgresql.org/
https://opensource.org/licenses/PostgreSQL

6.2. RESULTS

warehouses, we are increasing the likelihood of transactions to conflict, on the other hand,
if we increase the number of warehouses, then the chance of transactions conflicting is
reduced. The warehouse parameter enabled us to test the newly implemented JDBC-LSD
driver in two different scenarios, a high contention scenario and low contention scenario.

6.2 Results

In this section, we look at the results obtained for a high and low contention scenarios.
For each of these scenarios, we evaluate the performance of JDBC and JDBC-LSD over
the full TPC-C benchmark, the New-Order transaction and the Payment transaction. The
decision behind testing different transactions comes from the fact that only in the Payment
transaction we would be able to test a FutureCondition. In case of the full benchmark, some
transactions were not converted to LSD because of their read only nature, which would
not get any benefit of delayed operation execution.

In total, we execute six different tests and, for each one, we evaluate the following
results:

Throughput — The number of successful transactions executed per minute (tpmC);

Latency — The execution time, measured in milliseconds, from the moment the client
starts execution code of a transaction;

Failure — The number of transactions that failed execution due to conflicts;

Window — The execution time, measured in milliseconds, between the first query the
client executes in the database until commit.

6.2.1 High contention

As mentioned, the warehouses number control the contention in the database. Hence, for
testing the high contention scenario, we have reduced the number of warehouses to one,
yielding maximum contention.

New-Order transaction Starting with an analysis over the Figure 6.1, which shows the
results of the New-Order transaction results, we can see that we achieve a much higher
throughput (Figure 6.1a) with LSD. More specifically, the throughput gain over the BASE
is about 50%. In regard to the total latency in Figure 6.3b, we can see that the latency we
get for LSD is a much smaller (40%) than the BASE case, which aids in improving the
throughput of the transaction. The results of LSD are superior because, as contention
increases, so do the chances of conflicts, so reducing the latency greatly reduces the
chances of conflicts. Figure 6.1d corroborates this affirmation by showing that the LSD
transaction window is much lower than the transaction window of the BASE case, which
helps in reducing the transaction latency. When we look at the failed transactions in

43

CHAPTER 6. EVALUATION

0 20 40 60 80 100 120
Time (sec)

17500

20000

22500

25000

27500

30000

32500

35000

tp
m

C

LSD avg.

BASE avg.

tpmC

LSD
BASE

(a) Comparison of throughput between the LSD
and BASE.

0 20 40 60 80 100 120
Time (sec)

18

20

22

24

26

28

30

32

34

La
te

nc
y

(m
s)

LSD avg.

BASE avg.

Average latency
LSD
BASE

(b) Comparison of the average latency between
the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

1000

1100

1200

1300

1400

1500

1600

Fa
ile

d

LSD avg.

BASE avg.

Failures per second

LSD
BASE

(c) Comparison of the number of transaction
failures between the LSD and BASE in a high
contention scenario.

0 20 40 60 80 100 120
Time (sec)

5

10

15

20

25

30

35
W

in
do

w
(m

s)

LSD avg.

BASE avg.

Average transaction window
LSD
BASE

(d) Comparison of the average transaction win-
dow between the LSD and BASE.

Figure 6.1: Throughput, latency, transaction failures and transaction window after execut-
ing only the New-Order transaction with high contention. JDBC-LSD in represented by
LSD and the standard JDBC is represented by BASE line.

Figure 6.1c, we see, again, better results being achieved by the LSD API, with a reduction
of about 27% in failed transactions.

Payment transaction The results for this transaction are expressed in Figure 6.2. There,
we see that, in Figure 6.2a, LSD achieves a lower throughput than the BASE case. The
latency (Figure 6.2b) is also higher for the LSD, but the amount of aborted transactions
(Figure 6.2c) does not increase for LSD. Inspecting the transaction window (Figure 6.2d)
shows that its value is quite small, however, the transaction latency (Figure 6.2b) is higher.
These results made us question our implementation, and upon inspection, we found the
cause for this difference to be the FutureCondition that the Payment transaction relies on.
More specifically, the issue is that when defining the branch of a FutureCondition, we are
actually defining another future. This future, however, may have any type of work, be it a
database interaction or a local code execution. In the case of the Payment transaction, the
future branch that we define for the FutureCondition, is the creation of another future

44

6.2. RESULTS

0 20 40 60 80 100 120
Time (sec)

35000

40000

45000

50000

55000

60000

65000

tp
m

C

LSD avg.

BASE avg.

tpmC

LSD
BASE

(a) Comparison of throughput between the LSD
and BASE.

0 20 40 60 80 100 120
Time (sec)

10

12

14

16

La
te

nc
y

(m
s)

LSD avg.

BASE avg.

Average latency
LSD
BASE

(b) Comparison of the average latency between
the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

3000

3500

4000

4500

5000

5500

Fa
ile

d

LSD avg.

BASE avg.

Failures per second

LSD
BASE

(c) Comparison of the number of transaction
failures between the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

0

2

4

6

8

10
W

in
do

w
(m

s)

LSD avg.

BASE avg.

Average transaction window

LSD
BASE

(d) Comparison of the average transaction win-
dow between the LSD and BASE.

Figure 6.2: Throughput, latency, transaction failures and transaction window after execut-
ing only the Payment transaction with high contention. JDBC-LSD in represented by LSD
and the standard JDBC is represented by BASE line.

to update the database, which will only be added as futures of the transaction when
the branch is actually executing. This defeats the purpose of the LSD because in reality
by having a future create another future we are actually adding time to the transaction
window that did not need to be included.

All transactions When we execute all transactions defined in the TPC-C benchmark, we
achieve a higher throughput (Figure 6.3) with LSD when compared to BASE. The number
of transaction aborts (Figure 6.3c) that occur in this is case is very similar between LSD
and JDBC, which may be attributed to the Payment transaction having some influence on
the results. However, the latency (Figure 6.3b) and the transaction window (Figure 6.3d)
are much lower for LSD, which explains why we achieve higher throughput with LSD.

45

CHAPTER 6. EVALUATION

0 20 40 60 80 100 120
Time (sec)

20000

25000

30000

35000

40000

tp
m

C

LSD avg.

BASE avg.

tpmC
LSD
BASE

(a) Comparison of throughput between the LSD
and BASE.

0 20 40 60 80 100 120
Time (sec)

14

16

18

20

22

24

26

28

30

La
te

nc
y

(m
s)

LSD avg.

BASE avg.

Average latency
LSD
BASE

(b) Comparison of the average latency between
the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

1400

1600

1800

2000

2200

Fa
ile

d

LSD avg.
BASE avg.

Failures per second
LSD
BASE

(c) Comparison of the number of transaction
failures between the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

5

10

15

20

25

30

W
in

do
w

(m
s)

LSD avg.

BASE avg.

Average transaction window
LSD
BASE

(d) Comparison of the average transaction win-
dow between the LSD and BASE.

Figure 6.3: Throughput, latency, transaction failures and transaction window after execut-
ing all TPC-C transactions with high contention. JDBC-LSD in represented by LSD and
the standard JDBC is represented by BASE line

6.2.2 Low contention

The low contention scenario is where we expected to not have differences between the LSD
and JDBC. This is because, when contention is low, the chances of transactions conflict
occurring are much lower.

New-Order transaction Looking at results obtained for this transaction (Figure 6.4),
we can see that we still achieve some improvements with LSD in terms of throughput
(Figure 6.4a). The improvement comes from the fact that we are reducing the transaction
window (Figure 6.4d), and consequently the latency (Figure 6.4b), which liberates time
for more transaction to execute. As for the number of failed transactions (Figure 6.4c), the
result is similar between LSD and JDBC.

Payment transaction The execution of this transaction gives us worse results for LSD
when compared to BASE. The result is similar to the highcontention case, lower throughput

46

6.2. RESULTS

0 20 40 60 80 100 120
Time (sec)

15000

20000

25000

30000

35000

40000

45000

tp
m

C

LSD avg.
BASE avg.

tpmC
LSD
BASE

(a) Comparison of throughput between the LSD
and BASE.

0 20 40 60 80 100 120
Time (sec)

15

20

25

30

35

40

45

50

La
te

nc
y

(m
s)

LSD avg.

BASE avg.

Average latency
LSD
BASE

(b) Comparison of the average latency between
the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

500

1000

1500

2000

2500

3000

3500

Fa
ile

d

LSD avg.
BASE avg.

Failures per second
LSD
BASE

(c) Comparison of the number of transaction
failures between the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

15

20

25

30

35

40

45

50

W
in

do
w

(m
s)

LSD avg.

BASE avg.

Average transaction window
LSD
BASE

(d) Comparison of the average transaction win-
dow between the LSD and BASE.

Figure 6.4: Throughput, latency, transaction failures and transaction window after exe-
cuting only the New-Order transaction with low contention. JDBC-LSD in represented by
LSD and the standard JDBC is represented by BASE line.

(Figure 6.5a) and higher latency (Figure 6.5b). There is also instability in the throughput
and latency, which happens in both LSD and BASE, but with greater variance for LSD.
This, paired with the observation made about the FutureCondition in the equivalent
high contention scenario, likely indicates an issue with FutureCondition which needs
further investigation. As for the failures and transaction window, the results we got are
better for LSD than the BASE.

All transactions The execution of all transactions (Figure 6.6) yields, overall, better
results for LSD, although not so prominent as was the case of high contention. Still, the
throughput for LSD increased by roughly 20%, the latency for LSD decreased by roughly
10%, and the transaction window of LSD was cut down to roughly 30% of the original
transaction window of BASE. As for the failed transactions (Figure 6.6c), the results
between LSD and BASE is very similar, although BASE has some moments where a higher
amount of transactions failed.

47

CHAPTER 6. EVALUATION

0 20 40 60 80 100 120
Time (sec)

32000

34000

36000

38000

tp
m

C

LSD avg.

BASE avg.

tpmC
LSD
BASE

(a) Comparison of throughput between the LSD
and BASE.

0 20 40 60 80 100 120
Time (sec)

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

La
te

nc
y

(m
s) LSD avg.

BASE avg.

Average latency
LSD
BASE

(b) Comparison of the average latency between
the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

1800

2000

2200

2400

2600

2800

3000

Fa
ile

d

LSD avg.

BASE avg.

Failures per second
LSD
BASE

(c) Comparison of the number of transaction
failures between the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

4

6

8

10

12

14

16

18

W
in

do
w

(m
s)

LSD avg.

BASE avg.

Average transaction window

LSD
BASE

(d) Comparison of the average transaction win-
dow between the LSD and BASE.

Figure 6.5: Throughput, latency, transaction failures and transaction window after execut-
ing only the Payment transaction with low contention. JDBC-LSD in represented by LSD
and the standard JDBC is represented by BASE line.

48

6.2. RESULTS

0 20 40 60 80 100 120
Time (sec)

17500

20000

22500

25000

27500

30000

32500

35000

37500

tp
m

C

LSD avg.

BASE avg.

tpmC
LSD
BASE

(a) Comparison of throughput between the LSD
and BASE.

0 20 40 60 80 100 120
Time (sec)

20

25

30

35

La
te

nc
y

(m
s)

LSD avg.

BASE avg.

Average latency
LSD
BASE

(b) Comparison of the average latency between
the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

800

1000

1200

1400

1600

1800

Fa
ile

d

LSD avg.BASE avg.

Failures per second
LSD
BASE

(c) Comparison of the number of transaction
failures between the LSD and BASE.

0 20 40 60 80 100 120
Time (sec)

10

15

20

25

30

35

W
in

do
w

(m
s)

LSD avg.

BASE avg.

Average transaction window
LSD
BASE

(d) Comparison of the average transaction win-
dow between the LSD and BASE.

Figure 6.6: Throughput, latency, transaction failures and transaction window after execut-
ing all TPC-C transactions with low contention. JDBC-LSD in represented by LSD and the
standard JDBC is represented by BASE line.

49

7

Conclusions

In this chapter, we conclude this dissertation with final remarks and a summary of the
contributions highlighted in the previous chapters. We also give hints upon what to build
in the future for improving the results here achieved.

7.1 Summary and Conclusions

In the previous chapters, we have shown an implementation of the Lazy State Determina-
tion (LSD)-Application Programming Interface (API) that focuses on the client side. This
implementation was shown to provide improvements on the throughput of a system by
delaying operations. We have achieved this by defining a methodology, that got imple-
mented as an extension of the Java Database Connectivity (JDBC) and, although being
implemented as a JDBC extension, the methodology we defined could have been applied
to other different database driver APIs. For the JDBC specific case, we have implemented a
database driver that is compatible with all databases with a JDBC driver, providing great
flexibility for integrating with many databases. As for the JDBC extension, this new API
ended up being very similar to the original JDBC API, and as demonstrated in Section 5.1
by Listing 5.9, enables code conversion of a JDBC transaction to a JDBC-LSD transaction
to be a simple task without much impact on the overall implementation.

Overall, we have shown that the proposed solution allows for a greater throughput in
high contention scenarios and better, or similar, results in the low contention scenarios.
This proves the derived solution to be an alternative when executing database transactions
in a Relational Database Management System (RDBMS).

7.2 Future Work

The JDBC-LSD API leaves open some points that may be improved. Overall, the solution
for branching code execution is not perfect, since it will only be evaluated at commit time.
This is not ideal, since we may have any arbitrary amount of code inside a future condition
branch and also forces any future statement that needs to be executed in a future condition

50

7.2. FUTURE WORK

branch to be created and executed inside the commit method. To improve this, we
propose the evaluation of the condition, and its dependent futures, in a separate database
connection and, the validation of the same condition again at the end of the transaction.
The idea here is that we give greater flexibility to the programmer for branching code
execution, while also enabling multiple statements to be executed inside that same branch.

Another factor that could leverage some optimization, comes from the fact that, when
we execute the commit to the database, we know all the statements we need to execute.
Knowing this, gives us the opportunity to optimize multiple statements to be batched
into a single statement to the database, which would end up reducing the latency that
is added between database communications. This could be done by grouping them into
single statements that would share a common purpose, for instance, multiple inserts and
update statements into a single batch statement. Another thing that comes from the same
commit fact, would be to optimize the order of query execution as we know dependencies
we have at commit time.

Finally, and leveraging the JDBC-LSD API here presented, the next path to follow would
be to change the creation of futures to the database instead of the client. The JDBC-LSD
API would then send the future operations to the database. These future operations would
be stored in the database and when the JDBC-LSD API triggers a commit, the Concurrency
Control (CC) of the database would then resolve all the futures. This strategy should be
the one that more greatly reduces the window in which a transaction exposes it state to
other transactions. This happens because we would be removing the client to database
communication of the total transaction latency.

51

Bibliography

[1] Akamai Online Retail Performance Report: Akamai. [Online; accessed 23-January-2022].
url: https://www.akamai.com/newsroom/press-release/akamai-releases-
spring-2017-state-of-online-retail-performance-report (cit. on p. 1).

[2] H. Berenson et al. “A Critique of ANSI SQL Isolation Levels”. In: Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data. SIGMOD ’95.
San Jose, California, USA: Association for Computing Machinery, 1995, pp. 1–10.
isbn: 0897917316. doi: 10.1145/223784.223785 (cit. on pp. 5–7).

[3] B. Bhargava. “Concurrency control in database systems”. In: IEEE Transactions
on Knowledge and Data Engineering 11 (1 Jan. 1999), pp. 3–16. issn: 10414347. doi:
10.1109/69.755610 (cit. on pp. 7, 10).

[4] B. F. Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”. In: Pro-
ceedings of the 1st ACM Symposium on Cloud Computing. SoCC ’10. Indianapolis,
Indiana, USA: Association for Computing Machinery, 2010, pp. 143–154. isbn:
9781450300360. doi: 10.1145/1807128.1807152 (cit. on p. 58).

[5] K. P. Eswaran et al. “The Notions of Consistency and Predicate Locks in a Database
System”. In: Commun. ACM 19.11 (Nov. 1976), pp. 624–633. issn: 0001-0782. doi:
10.1145/360363.360369 (cit. on p. 9).

[6] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992. isbn: 1558601902
(cit. on p. 9).

[7] H. T. Kung and J. T. Robinson. “On Optimistic Methods for Concurrency Control”.
In: ACM Trans. Database Syst. 6.2 (June 1981), pp. 213–226. issn: 0362-5915. doi:
10.1145/319566.319567 (cit. on p. 10).

[8] H. Lim, M. Kaminsky, and D. G. Andersen. “Cicada: Dependably Fast Multi-Core
In-Memory Transactions”. In: Proceedings of the 2017 ACM International Conference
on Management of Data. SIGMOD ’17. Chicago, Illinois, USA: Association for
Computing Machinery, 2017, pp. 21–35. isbn: 9781450341974. doi: 10.1145/3035
918.3064015 (cit. on pp. 13, 21, 60).

52

https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://doi.org/10.1145/223784.223785
https://doi.org/10.1109/69.755610
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/3035918.3064015
https://doi.org/10.1145/3035918.3064015

BIBLIOGRAPHY

[9] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University
Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/
master/template.pdf (cit. on p. ii).

[10] D. A. Menascé and T. Nakanishi. “Optimistic versus pessimistic concurrency control
mechanisms in database management systems”. In: Information Systems 7.1 (1982),
pp. 13–27. issn: 0306-4379. doi: 10.1016/0306-4379(82)90003-5 (cit. on p. 7).

[11] C. H. Papadimitriou. “The Serializability of Concurrent Database Updates”. In: J.
ACM 26.4 (Oct. 1979), pp. 631–653. issn: 0004-5411. doi: 10.1145/322154.322158
(cit. on p. 5).

[12] G. Prasaad, A. Cheung, and D. Suciu. “Improving High Contention OLTP Per-
formance via Transaction Scheduling”. In: CoRR abs/1810.01997 (2018). arXiv:
1810.01997 (cit. on pp. 13, 14).

[13] D. Pritchett. “Base an acid alternative”. In: Queue 6 (3 May 2008), pp. 48–55. issn:
15427730. doi: 10.1145/1394127.1394128 (cit. on pp. 14, 15).

[14] RocksDB | A persistent key-value store | RocksDB. [Online; accessed 23-January-2022].
url: https://rocksdb.org/ (cit. on p. 20).

[15] D. Shasha et al. “Transaction Chopping: Algorithms and Performance Studies”.
In: ACM Trans. Database Syst. 20.3 (Sept. 1995), pp. 325–363. issn: 0362-5915. doi:
10.1145/211414.211427 (cit. on p. 15).

[16] Y. Sheng et al. “Scheduling OLTP Transactions via Learned Abort Prediction”.
In: Proceedings of the Second International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management. aiDM ’19. Amsterdam, Netherlands: Association
for Computing Machinery, 2019. isbn: 9781450368025. doi: 10.1145/3329859.33
29871 (cit. on p. 15).

[17] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database system concepts. 6th ed.
New York: McGraw-Hill, 1986. isbn: 0070447527. url: http://www.db-book.com/
(cit. on pp. 4, 6, 7).

[18] E. Subtil. “Lazy State Determination for SQL Databases”. MA thesis. NOVA School
of Science and Technology, 2021 (cit. on pp. 2, 4, 20).

[19] TPC History. [Online; accessed 23-January-2022]. url: http://www.tpc.org/
tpc_documents_current_versions/current_specifications5.asp (cit. on pp. 2,
55–57).

[20] TPC History. [Online; accessed23-January-2022]. url: http://tpc.org/information/
about/history5.asp (cit. on p. 55).

[21] S. Tu et al. “Speedy Transactions in Multicore In-Memory Databases”. In: Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP ’13.
Farminton, Pennsylvania: Association for Computing Machinery, 2013, pp. 18–32.
isbn: 9781450323888. doi: 10.1145/2517349.2522713 (cit. on pp. 11, 12, 21, 60).

53

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1016/0306-4379(82)90003-5
https://doi.org/10.1145/322154.322158
https://arxiv.org/abs/1810.01997
https://doi.org/10.1145/1394127.1394128
https://rocksdb.org/
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.1145/3329859.3329871
http://www.db-book.com/
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://tpc.org/information/about/history5.asp
http://tpc.org/information/about/history5.asp
https://doi.org/10.1145/2517349.2522713

BIBLIOGRAPHY

[22] T. M. do Vale. “Executing requests concurrently in state machine replication”. PhD
thesis. Nova School of Science and Technology, 2019. url: https://run.unl.pt/
handle/10362/71218 (cit. on pp. 2, 4, 16, 20).

[23] Y. Wu et al. “An Empirical Evaluation of In-Memory Multi-Version Concurrency
Control”. In: Proc. VLDB Endow. 10.7 (Mar. 2017), pp. 781–792. issn: 2150-8097.
doi: 10.14778/3067421.3067427 (cit. on p. 12).

[24] C. Xie et al. “High-performance ACID via modular concurrency control”. In: SOSP
2015 - Proceedings of the 25th ACM Symposium on Operating Systems Principles (Oct.
2015), pp. 279–294. doi: 10.1145/2815400.2815430 (cit. on p. 15).

[25] C. Xie et al. “Salt: Combining ACID and BASE in a Distributed Database”. In:
Proceedings of the 11th USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI’14. Broomfield, CO: USENIX Association, 2014, pp. 495–509. isbn:
9781931971164 (cit. on pp. 14, 15).

[26] X. Yu et al. “TicToc: Time Traveling Optimistic Concurrency Control”. In: Proceedings
of the 2016 International Conference on Management of Data. SIGMOD ’16. San Francisco,
California, USA: Association for Computing Machinery, 2016, pp. 1629–1642. isbn:
9781450335317. doi: 10.1145/2882903.2882935 (cit. on pp. 12, 21, 60).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.5) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 54).

54

https://run.unl.pt/handle/10362/71218
https://run.unl.pt/handle/10362/71218
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.1145/2815400.2815430
https://doi.org/10.1145/2882903.2882935
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A

The TPC-C Benchmark

Transaction Processing Performance Council (TPC) is an industry leading organization
with regard to Online Transaction Processing (OLTP) benchmarks. In the following
sections, we describe the TPC Benchmark C (TPC-C) and how its parameters may influence
test execution and generate different scenarios. We also describe a more modern approach
on benchmarking databases with Yahoo! Cloud Serving Benchmark (YCSB).

A.1 Brief History

It was in the 1980s that the industry began racing towards accelerating automation in
our daily lives, leading them to rely on even more in databases performance. The first
application in focus was the Automated Teller Machine (ATM) [20], but automation ended
up reaching many industry segments. These industries started to rely on OLTP, stimulating
database vendors competition. To prove performance of their systems, database vendors
began making claims over, the now defunct, TP1 benchmark. This benchmark, however,
had flaws over the assumptions it made and could inflate performance results [20]. It is
over this context that the benchmarks from Transaction Processing Performance Council
(TPC) have come to live. Over the years many benchmarks have been proposed, but to
this date, the most widely used is TPC Benchmark C (TPC-C).

A.2 The Company

The TPC-C benchmark models a multi-warehouse operation, also known as the Com-
pany [19]. The company portrayed by this benchmark is a wholesale supplier with a
number of geographically distributed sales districts and associated warehouses. Each
warehouse is responsible for covering 10 distinct districts with each district serving 3000
customers. All the warehouses are required to maintain stocks for the 100,000 items that
are sold by the Company. The Company structure is present in Figure A.1.

For representing such environment, the database is divided into the following entities
(Figure A.2):

55

APPENDIX A. THE TPC-C BENCHMARK

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 10 of 130

Clause 1: LOGICAL DATABASE DESIGN

1.1 Business and Application Environment

TPC Benchmark™ C is comprised of a set of basic operations designed to exercise system functionalities in a manner
representative of complex OLTP application environments. These basic operations have been given a life-like
context, portraying the activity of a wholesale supplier, to help users relate intuitively to the components of the
benchmark. The workload is centered on the activity of processing orders and provides a logical database design,
which can be d istributed without structural changes to transactions.

TPC-C does not represent the activity of any particular business segment, but rather any industry which must
manage, sell, or d istribu te a product or service (e.g., car rental, food d istribu tion, parts supplie r, etc.). TPC-C does
not attempt to be a model of how to build an actual application .

The purpose of a benchmark is to reduce the d iversity of operations found in a production application , while
retaining the application's essential performance characteristics, namely: the level of system utilization and the
complexity of operations. A large number of functions have to be performed to manage a production order entry
system. Many of these functions are not of primary interest for performance analysis, since they are proportionally
small in terms of system resource utilization or in terms of frequency of execution. Although these functions are vital
for a production system, they merely create excessive d iversity in the context of a standard benchmark and have
been omitted in TPC-C.

The Company portrayed by the benchmark is a wholesale supplier w ith a number of geographically d istributed
sales d istricts and associated warehouses. As the Company's business expands, new warehouses and associated
sales d istricts are created . Each regional warehouse covers 10 d istricts. Each d istrict serves 3,000 customers. All
warehouses maintain stocks for the 100,000 items sold by the Company. The following d iagram illustrat es the
warehouse, d istrict, and customer hierarchy of TPC-C's business environment.

Customers

Company

Warehouse-1

Dis trict-10

Warehouse-W

Dis trict-1 Dis trict-2

3k1 2 30k

Figure A.1: The Company business structure. Source TPC-C specification [19].

Item — Holds information over the 100,000 products sold by the Company.

Warehouse — Holds information over the warehouses the Company own. Represented
by W in the Figure A.2.

Stock — Holds information over the stock of the products sold by the Company. It is of
size 𝑊 ∗ 100, 000.

District — Holds information over the different districts where the Company is present.
It is of size 𝑊 ∗ 10.

Customer — Holds information over the customers the Company has. It is of size 𝑊 ∗
30, 000.

History — Holds information over the purchases of each customer. It is of size 𝑊 ∗ 30, 000
but is subject to variations depending on the parameters of execution.

Order — Holds information over the orders sent to the Company. It is of size 𝑊 ∗ 30, 000
but is subject to variations depending on the parameters of execution.

New-Order — Holds information over new orders sent to the Company. It starts with
size 𝑊 ∗ 9, 000.

Order-Line — Holds information over each line of the orders sent to the Company. It is
of size 𝑊 ∗ 300, 000 but is subject to variations.

56

A.3. THE BENCHMARK

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 11 of 130

Customers call the Company to place a new order or request the status of an existing order. Orders are composed of
an average of 10 order lines (i.e., line items). One p ercent of all order lines are for items not in -stock at the regional
warehouse and must be supplied by another warehouse.

The Company's system is also used to enter payments from customers, process orders for delivery, and examine
stock levels to identify potential supply shortages.

1.2 Database Entities, Relationships, and Characteristics

1.2.1 The components of the TPC-C database are defined to consist of nine separate and ind ividua l tables.
The relationships among these tables are defined in the entity -relationship d iagram shown below and are subject to
the rules specified in Clause 1.4.

Warehouse Dis trict

His tory

Customer
New-Order

OrderOrder-L ineItem

Stock

W W*10

3k

1+

W*30k

W*30k+5-15

0-1

1+
W*30k+

W*9k+

W*300k+

3+

100k

W

W*100k

100k

10

Legend:

• All numbers shown illustrate the database population requirements (see Clause 4.3) .

• The numbers in the entity blocks represent the card inality of the tables (number of rows). These numbers are
factored by W, the number of Warehouses, to illustrate the database scaling. (see Clause 4).

• The numbers next to the relationship arrows represent the card inality of the relationships (average number of
child ren per parent).

• The plus (+) symbol is used after the card inality of a relationship or table to illustrate that this number is
subject to small variations in the initial database population over the measurement interval (see Clause 5.5) as
rows are added or deleted .

1.3 Table Layouts

1.3.1 The following list defines the minimal structure (list of attributes) of each table where:

• N unique IDs means that the attribute must be able to hold any one ID within a minimum set of N unique
IDs, regard less of the physical representation (e.g., binary, packed decimal, alphabetic, etc.) of the attribute.

• variable text, size N means that the attribute must be able to hold any string of characters of a variable length
with a maximum length of N. If the attribute is stored as a fixed length string and the string it h olds is shorter
than N characters, it must be padded with spaces.

Figure A.2: The Company database entities. Source TPC-C specification [19].

A.3 The Benchmark

Leveraging the structure presented in the previous section, TPC-C [19] defines five different
types of transactions:

New-Order — Simulates the entering of a new order in the database through a single
transaction. It forms the backbone of the benchmark and has the most strict require-
ments in terms of latency. It is a read-write transaction that has a high frequency of
execution and where about 1% of the transactions will fail in order to test transaction
rollbacks.

Payment — It updates the customer balance and reflects the payment value to the district
and warehouse statistics. It is a read-write transaction with high frequency of
execution and strict latency requirements.

Order-Status — Queries the status of a customer later order. It is a read-only transaction
that has a low frequency of execution and low latency requirements.

Delivery — This transaction processes batches of 10 yet to be delivered orders. It is a
read-write transaction that has a low frequency of execution and relaxed response
time requirements.

Stock-level — This transaction calculates the number of items recently sold that have a
stock level bellow a certain threshold. It is a read-only transaction that has a low
frequency of execution, has a relaxed response time and consistency requirements.

The number of warehouses (𝑊) is a key configurable parameter that determines the
scale of the benchmark. Increasing it, increases the number of warehouses, the number of
concurrent clients and consequently the data set size.

57

APPENDIX A. THE TPC-C BENCHMARK

Results of the benchmark are measured in tpmC, which represents transactions per
minute.

A.4 YCSB, a Modern Alternative

Cloud computing has gained a lot of traction in the last few years, with many cloud
providers appearing to face the demand. The ubiquity of cloud systems bring, not only
new of applications, but also new challenges for traditional Database Management System
(DBMS). Due to this, today’s systems began to rely on database models that differ from the
traditional relational data structure present in Relational Database Management System
(RDBMS). Models such as Key-Value stores, Document stores and Column oriented stores
are quite common today. These models were born from specific needs, and help today’s
applications perform better on specific workloads. Examples of such database models
are Cassandra 1, CouchDB 2, MongoDB 3 and Voldemort 4, and fall under the group of
NoSQL databases.

Although the TPC-C benchmark has a lot of similarities with workloads that run in
today’s systems, it manages to only capture a sub-set, and it may not represent the ways
that DBMS are used to this date. It is with this in mind that the Yahoo! Cloud Serving
Benchmark (YCSB) [4] is proposed by Cooper et al. Their goal was to create a standard
benchmark and benchmarking framework to assist in the evaluation process of different
database systems. The framework enables fine tune of the standard workloads in order
to match specific system requirements and is also extensible by allowing new DBMS and
workloads to be added.

A.4.1 Workloads

The standard benchmarks present in Yahoo! Cloud Serving Benchmark (YCSB) aims to
model a serving system. Serving systems are systems that provide online read and write
access to data. This is modeled from users interaction with websites, that is, while a user
waits for a web page to load, a server carries reads and writes to a database in order to
construct and deliver that web page. Even though a particular model is defined, the goal
of YCSB is to, given an analysis made to several systems, provide standard workloads that
most closely capture real world systems, and not a sub-set as is the case of TPC-C.

The workloads present in the YCSB all derive from a basic application. In this
application there is a table of records, each with a parametrized number of fields. The
value of each field is a random ASCII string with its size being parametrized, and each
record is identified by a primary key. Operations executed against the database are chosen

1https://cassandra.apache.org/_/index.html
2https://couchdb.apache.org/
3https://www.mongodb.com/
4https://www.project-voldemort.com/

58

https://cassandra.apache.org/_/index.html
https://couchdb.apache.org/
https://www.mongodb.com/
https://www.project-voldemort.com/

A.4. YCSB, A MODERN ALTERNATIVE

Table A.1: Standard workloads present in the YCSB.

Workload Operations Record selection

A - Update heavy Read: 50% ZipfianUpdate: 50%

B - Read heavy Read: 95% ZipfianUpdate: 5%
C - Read only Read: 100% Zipfian

D - Read latest Read: 95% LatestInsert: 5%

E - Short ranges Scan: 95% Zipfian/UniformInsert: 5%

randomly, and are inserts, updates, reads and scans. Random choices over records to read
and write are made using the following distributions:

Uniform — all records have equal chance of being chosen;

Zipfian — some records will be extremely popular while some others are not;

Latest — most recent records are more likely to be chosen; and

Multinomial — specific probabilities of read and write operations on an item.

Table A.1 gives an overview of the standard workloads present in the YCSB. An
example for each workload is listed below:

Workload A — A update heavy test in which reads and updates are divided equally, An
example of an application would be a session storage recording actions in a user
session;

Workload B — A read focused test with very few updates. An example of such workload
would be photo tagging, in which the addition of a tag would be an update but most
operations are for reading the tags;

Workload C — A read only test and, as an example, models some application that caches
user profiles;

Workload D — A test that focuses on reading the latest items with very few inserts.
An example of such workload would be an application in which users post status
updates, however, the bulk of operations is on reading the latest status;

Workload E — A test that focuses on reading the latest items with very few inserts. An
example of such workload would be an application in which most users are reading
the latest status and very few are posting status updates; and

59

APPENDIX A. THE TPC-C BENCHMARK

Workload F — A test that focuses on scans/ranges of data with very few inserts. This
could be the case of threaded conversations, where each scan is for a specific thread.

Unlike TPC-C, which models a specific workload of a subset of applications, YCSB
is more flexible and allows for a more generalized approach when looking at real world
performance. In a sense, these two benchmarks add to each other and using TPC-C and
YCSB may be beneficial when gauging DBMS performance. This is certainly the case of the
literature [8, 21, 26], which in some cases uses both TPC-C and YCSB in their benchmarks.

60

Th
al

es
Pa

rr
ei

ra
Em

po
w

er
in

g
a

Re
la

tio
na

lD
at

ab
as

e
w

ith
LS

D
:L

az
y

St
at

e
D

et
er

m
in

at
io

n
20

22

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Context and Motivation
	1.2 Problem and Goals
	1.3 Approach and Contributions
	1.4 Outline

	2 Background and Related Work
	2.1 Transactions
	2.1.1 Transaction Properties
	2.1.2 Serializability

	2.2 Concurrency in Databases
	2.2.1 Concurrency Control
	2.2.2 Different Take

	2.3 Lazy State Determination
	2.3.1 Overview
	2.3.2 Anatomy of a Future
	2.3.3 Operations
	2.3.4 The First Prototype

	3 An Introduction to JDBC
	3.1 Overview
	3.2 Interfaces
	3.2.1 Connection
	3.2.2 Statement and PreparedStatement
	3.2.3 ResultSet
	3.2.4 Others

	3.3 An Example

	4 LSD Strategy
	4.1 Properties
	4.1.1 Resolvability
	4.1.2 Immutability
	4.1.3 Encapsulation

	4.2 Future

	5 JDBC with LSD
	5.1 Overview
	5.2 Interfaces
	5.2.1 Connection
	5.2.2 FutureStatement and PreparedFutureStatement
	5.2.3 FutureResultSet
	5.2.4 FutureCondition

	5.3 Implementation
	5.3.1 FutureConnection
	5.3.2 FutureStatement and PreparedFutureStatement
	5.3.3 FutureResultSet
	5.3.4 FutureCondition
	5.3.5 Others

	5.4 An Example

	6 Evaluation
	6.1 Test setup
	6.2 Results
	6.2.1 High contention
	6.2.2 Low contention

	7 Conclusions
	7.1 Summary and Conclusions
	7.2 Future Work

	Bibliography
	A The TPC-C Benchmark
	A.1 Brief History
	A.2 The Company
	A.3 The Benchmark
	A.4 YCSB, a Modern Alternative
	A.4.1 Workloads

	Back Matter
	Back Cover
	Spine

