

Trabalho Prático – Estudo da produção de milho em Aljustrel

ΙΟΥΔ

Deteção Remota e Análise de Imagem

2020/2021

Grupo 4:

Ana Brito, nº59479

Heliane Gomes, nº60787

Índice

1.	Intro	odução e Objetivos	3				
	1.1.	Cultura do Milho	3				
	1.2.	Aljustrel	3				
	1.3.	Objetivos	3				
2.	Met	odologia de análise	3				
4	2.1.	Sentinel 2	4				
3.	Apre	esentação de resultados	5				
	3.1.	Imagens obtidas	5				
	3.2.	Interpretação da variação do NDVI	5				
	3.3.	Homogeneidade dos pivots	6				
	3.4.	Estimativa do uso de água para rega	6				
	3.5.	Estimativa da necessidade de água por cada kg de milho produzido nos pivots					
0	escolh	idos	6				
4.	Con	clusões	7				
5.	Bibliografia						
6.	Anexos						

1. Introdução e Objetivos

1.1. Cultura do Milho

O milho é uma espécie que é cultivada há mais de 8000 anos e em inúmeras partes do Mundo. É uma cultura com bastante adaptabilidade e variedade devido aos seus variados genótipos, fazendo com que consiga resistir a várias condições ambientais. O milho está então associado à produção de silagem e à produção de grão sendo uma cultura com bastante potencial produtivo. (Barros & Calado, 2014) O plantio deste cultivo inicia-se no final do inverno, alongando-se por toda a primavera (*ANPROMIS - O Milho*, n.d.), e a colheita é normalmente feita entre a segunda quinzena de agosto e a primeira quinzena de setembro (Barros & Calado, 2014).

A sua cultura em Portugal tem vindo a aumentar ao longo dos anos, sendo este aumento mais significativo nas zonas do Alentejo, ocupando cerca de 150 000 ha de área cultivada em todo o país (*ANPROMIS* - *O Milho*, n.d.) e sendo um contributo importante para a vitalidade das economias regionais e nacional (Barros & Calado, 2014). A produção deste recurso, segundo o INE, gerou em 2019, 1,18 milhões €/tonelada.

1.2. Aljustrel

Os pivots a serem estudados encontram-se na área de Aljustrel, município situado no distrito de Beja. Esta zona do baixo Alentejo tem visto a sua produção de milho crescer nos últimos anos, bem como a produtividade da mesma. (Lopes, 2016)

1.3. Objetivos

Os objetivos deste trabalho passaram pela identificação de pivots de modo a estudar a produção de milho nos mesmos. Foi utilizado o programa ArcGIS Pro para obtenção de resultados que permitiram uma avaliação das épocas de maior e menor produtividade dos pivots escolhidos, bem como a área dos mesmos e a água gasta em rega.

2. Metodologia de análise

Usando a ferramenta ArcGIS Pro, é possível digitalizar os pivots escolhidos, que por sua vez são visualizados com a ferramenta de processamento NDVI Raw, sendo posteriormente submetidos a análises estatísticas de modo a que o tratamento e análise de dados seja possível.

Para digitalizar os pivots é necessário selecionar uma área do Alentejo e seus respetivos pivots, que se processam da seguinte forma: $View \rightarrow Catalog View \rightarrow Database \rightarrow TR_DRAI$, clicar no lado direito do rato, ver a função New e selecionar Feature Class, criando um nome para a mesma (neste trabalho deu-se o nome de PIVOTS_1_2_ALJUSTREL). Para concluir este passo, é necessário assinalar no M values e clicar no Finish, para se finalizar a criação do feature class, que corresponde à estrutura do ficheiro para a digitalização dos pivots respetivos.

O passo seguinte é a importação dos pivots para a *Geodatabase*, através das funções *Map* e *Add* data, que criam no *Content* um polígono dos pivots que irá ser alterado para um círculo (esta alteração é feita com as seguintes funções: clicar no lado direito do rato duas vezes em *Symbology*, em que se consegue tirar a cor de dentro do polígono, alterar a forma e pôr uma cor de contorno do mesmo (que neste caso será o vermelho)). Agora a digitalização dos pivots, passa por clicar no nome do pivot que está no *Content* e logo a seguir ir às funções (*Edit e Create*), onde se seleciona o polígono (círculo que irá ser desenhado no mapa) e clicando duas vezes no rato para fixar o polígono.

Após a digitalização dos pivots, podem escolher-se as imagens com as respetivas datas, indo ao *Content*, clicar sobre o rato *Sentinnel-2 Views* e ir à função *Image Service Layer*. Em seguida ir à

função *Data* e depois *Explore Raster items*. Aparecerá uma nova caixa para seleção das imagens, que por sua vez, muda-se a caixa *By Area of Interest* para *Display Extent* e a caixa *By Attribute* para *Custom*.

Para a aquisição das imagens, clica-se em New Expression:

- 1- Where \rightarrow selecionar acquisition date \rightarrow selecionar is after \rightarrow escolher a data 01/03/2020
- 2- Add clause
- 3- And \rightarrow selecionar cloudcover \rightarrow selecionar is less than \rightarrow escolher 0.2
- 4- Daí aparecem as imagens e selecionam-se oito imagens

Após a seleção das imagens aplica-se o NDVI Raw, com a respetiva escala de cores, depois de se aplicar o DRA em cada imagem – abre o contraste da imagem, permitindo visualizar o pretendido ao invés de uma cor sólida.

Para a obter a tabela com a análise estatística, inicialmente seleciona-se PIVOTS_1_2_ALJUSTREL na janela *Content*. O passo seguinte é selecionar na barra de ferramentas a janela *Analysis*, e em *Tools*, selecionar a função *Zonal Statistics as Table*. Nesta função selecionamos a área dos pivots e a data para a qual queremos obter os dados em tabela, seguindo os passos:

- 1- No campo *Input raster* ou *feature zone data* coloca-se PIVOTS_1_2_ALJUSTREL;
- 2- No campo *Input value raster* seleciona-se a data da imagem pretendida, previamente extraída no *Explore raster items*;
- 3- No campo Output table identificar a data da imagem no nome do ficheiro;
- 4- Repetir estes passos para as oito imagens.

Tem-se então o necessário para abrir as tabelas e proceder à análise de dados.

2.1. Sentinel 2

O *Sentinel 2* é um programa multiespectral, podendo observar-se as 13 bandas a ele correspondentes na Tabela 1. A sua resolução espacial é global e o seu período de revisitação é de 5 dias. Quer isto dizer que de 5 em 5 dias, o programa fornece imagens atualizadas de toda a superfície do globo. (*Sentinel-2 Views*, n.d.) Já a sua resolução radiométrica é de 12 bits. (ESA, 2015)

Banda	Descrição	c.d.o. (µm)	Resolução (m)	Banda	Descrição	c.d.o. (µm)	Resolução (m)
1	Coastal	0.433 -	60	0	NUD	0.785 -	10
T	aerosol	0.453	00	0	NIA	0.900	10
Э	Plue	0.458 -	10	ο Λ	Narrow	0.855 -	20
Z	Blue	0.523	10	ŏА	NIR	0.875	20
Э	Green	0.543 -	10	9	Water	0.935 -	60
5		0.578			vapour	0.955	00
4	Rod	0.650 -	10	10	SWIR –	1.365 -	60
4	neu	0.680	10	10	Cirrus	1.385	
Г	Vegetation	0.698 -	20	11		1.565 -	20
5	Red Edge	0.713	20		SVVIK-1	1.655	20
G	Vegetation	0.733 -	20	10	SIA/ID 2	2.100 -	20
0	Red Edge	0.748	20	12	SVVIK-2	2.280	20
7	Vegetation	0.773 -	20				
/	Red Edge	0.793	20				

Tabela 1 - Tabela referente às bandas do Sentinel 2. Fonte: https://www.arcgis.com/home/item.html?id=fd61b9e0c69c4e14bebd50a9a968348c

3. Apresentação de resultados

3.1. Imagens obtidas

Na figura 1 é possível observar as imagens obtidas para cada data escolhida, com a aplicação do NDVI. Visualmente, é possível perceber o nível de produtividade dos pivots, consoante a sua cor - áreas com maior coloração vermelha correspondem a áreas de maior produtividade, e pelo contrário, as áreas com maior coloração amarela, apresentam menor. Assim, observa-se que o pivot 1 apresenta maior produtividade entre 23 de junho e 2 de agosto, e o pivot 2 tem o seu pico de produção mais cedo, na data de 8 de junho.

23 de junho

8 de junho

Figura 1 – Imagens dos pivots escolhidos para as diferentes datas consideradas

3.2. Interpretação da variação do NDVI

Através da interpretação das médias do NDVI é possível estimar, em função da análise da produtividade de cada pivot, a data de colheita, bem como possíveis anomalias na produção. É também possível observar a relação da evolução das linhas do gráfico com as cores das imagens da Figura 1. Os valores exatos destas médias encontram-se no Anexo 1.

Quanto ao pivot 1, é possível ver que a curva segue o formato esperado, sendo que a colheita deve ocorrer perto de 6 de setembro, onde a produtividade do pivot começa a descer. Já o pivot 2 apresenta algumas anomalias, que se pensam ser devido à existência de colheitas parciais, sendo o restante da produção deixado no campo, para ser colhido mais tarde. Assim, para o segundo pivot, podem ter existido 3 datas de colheita parcial, correspondentes aos picos observados na Figura 2. A primeira data de colheita seria no fim de junho, após dia 23; a segunda data perto de dia 3 de julho; e a terceira e última data de colheita seria perto de dia 6 de setembro.

Apesar de existir um pico de NDVI maior no pivot 2, o pivot 1 para além de ser mais consistente, apresenta maiores valores de produtividade nas restantes alturas. Assim, o pivot 1 é então o que apresnta maior potencial.

Figura 2 - Gráfico referente às médias dos valores de NDVI obtidos pela análise estatística aos pivots escolhidos para este estudo

3.3. Homogeneidade dos pivots

A homogeneidade dos pivots pode ser avaliada através da interpretação dos valores do desvio padrão do NDVI. Os valores obtidos para os pivots selecionados encontram-se no Anexo 2.

Relativamente ao pivot 1, é possível dizer que as variações no desvio padrão se dão somente quando há um aumento e diminuição da produtividade, apresentando sempre valores baixos. Assim, este pivot pode ser considerado homogéneo.

Quanto ao pivot 2, o mesmo não é observável. Os valores em cada data são baixos (até mais baixos que os do pivot 1) mas, olhando para o panorama geral, as variações de data para data são mais significativas, sendo novamente um indicador que podem acontecer colheitas parciais e não totais. Assim, este pivot não é homogéneo.

3.4. Estimativa do uso de água para rega

Para a estimativa do uso de água para a rega de cada pivot é importante referir que o pivot 1 tem 820 799,79 m² e o pivot 2, 486 199,88 m². Estes valores são dados pela análise estatística realizada.

Considerando as datas de plantio e colheita estimadas pelos valores obtidos de NDVI e que a rega começa uma semana antes do início do aumento da produtividade e acaba aquando a colheita, no pivot 1 temos 14 semanas de rega, e no pivot 2, 17 semanas (embora a última colheita do pivot 2 esteja estimada para a mesma altura que a colheita do pivot 1, a produtividade do pivot 2 começa a aumentar mais cedo, tendo por isso mais semanas de rega). Assim, para o pivot 1 considera-se uma média de 65 mm por semana, em modelo de aspersão, e para o pivot 2, 61 mm.

Fazendo as contas (nºde semanas*média de água gasta por semana*área do pivot), o pivot 1 necessita de aproximadamente 7,47x10⁸ L de água durante toda a produção, e o pivot 2 necessita de aproximadamente 5x10⁸ L. Esta informação encontra-se resumida em forma de tabela no Anexo 3.

3.5. Estimativa da necessidade de água por cada kg de milho produzido nos pivots escolhidos

Considerando os valores obtidos no ponto 3.4. e que existe uma produção de 13 172 kg de milho por ha cultivado (dados estatísticos de 2017), no pivot 1 são gastos 685 L de água para produzir 1 kg de milho e no pivot 2 são gastos 781 L de água por cada kg de milho produzido. Esta informação encontra-se resumida em forma de tabela no Anexo 4.

4. Conclusões

Com este trabalho foi possível entender a extensão da utilidade de ferramentas como o ArcGIS, bem como de todo o trabalho de análise de imagens. Em conjunto, podem fornecer importantes informações sobre a produtividade de terrenos agrícolas, bem como do gasto de água das produções. Com esta informação é possível adaptar produções de maneira eficiente, sendo benéfico não só para o produtor, mas também para o meio ambiente.

5. Bibliografia

- ANPROMIS O Milho. (n.d.). Retrieved January 26, 2021, from http://www.anpromis.pt/omilho.html
- Barros, J. F. C., & Calado, J. G. (2014). DEPARTAMENTO DE FITOTECNIA A Cultura do Milho. *Book*, 1–52.

ESA. (2015). ESA's Optical High-Resolution Mission for GMES Operational Services.

Lopes, V. S. (2016). Avaliação agronómica de variedades, e efeito da densidade de sementeira em milhos híbridos. https://doi.org/201635968

Sentinel-2 Views. (n.d.). Retrieved February 10, 2021, from https://www.arcgis.com/home/item.html?id=fd61b9e0c69c4e14bebd50a9a968348c

6. Anexos

	10/mar	24/mai	08/jun	23/jun	03/jul	02/ago	06/set	11/out
Pivot 1	0,24	0,17	0,45	0,58	0,65	0,64	0,48	0,20
Pivot 2	0,21	0,46	0,72	0,31	0,49	0,37	0,49	0,11

Anexo 1 - Tabela com os valores das médias do NDVI, obtidos para cada data e para cada pivot.

	10/mar	24/mai	08/jun	23/jun	03/jul	02/ago	06/set	11/out
Pivot 1	0,21	0,05	0,14	0,23	0,26	0,26	0,19	0,04
Pivot 2	0,15	0,13	0,18	0,06	0,14	0,09	0,16	0,02

Anexo 2 - Tabela com os valores dos desvios padrões para os dados de NDVI, obtidos para cada data e para cada pivot.

	Semanas de rega	Água média gasta/semana (mm)	Área do pivot (m2)	Total de água necessária para a rega do pivot (L)
Pivot 1	14	65	820 799,79	7,47x108
Pivot 2	17	61	486199,88	5x108

Anexo 3 - Tabela informativa referente à água necessária para regar cada pivot.

	Área do pivot (m ²)	Área do pivot (ha)	Total de água necessária para a rega do pivot (L)	Água necessária para a rega de 1 ha	Água necessária por kg de milho produzido (L)
Pivot 1	820 799,79	82,8	7,47x10 ⁸	9x10 ⁶	685
Pivot 2	486199,88	48,6	5x10 ⁸	1x10 ⁷	781

Anexo 4 - Tabela com os valores utilizados para o cálculo da água necessária para a rega de 1 kg de milho.