Export 101 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
Bravo, {AC}, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos {MP}, Maio R, Paulino J, {Viana Baptista} P, Fernandes {AR}, Cravo M.  2024.  Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma: A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples, oct. Cancers. 16, Number 20: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) incidence is rising, and prognosis remains poor due to late diagnosis and limited effective therapies. Currently, patients are treated based on TNM staging, without molecular tumor characterization. This study aimed to validate a technique that combines the amplification refractory mutation system (ARMS) with high-resolution melting analysis (HRMA) for detecting mutations in codon 12 of KRAS in tumor and plasma, and to assess its prognostic value. Methods: Prospective study including patients with newly diagnosed PDAC with tumor and plasma samples collected before treatment. Mutations in codon 12 of KRAS (G12D, G12V, G12C, and G12R) were detected using ARMS–HRMA and compared to Sanger sequencing (SS). Univariate and multivariate analyses were used to evaluate the prognostic significance of these mutations. Results: A total of 88 patients, 93% with ECOG-PS 0–1, 57% with resectable disease. ARMS–HRMA technique showed a higher sensitivity than SS, both in tumor and plasma (77% vs. 51%; 25 vs. 0%, respectively). The most frequent mutation was G12D (n = 32, 36%), followed by G12V (n = 22, 25%). On multivariate analysis, patients with G12D and/or G12C mutations, either in tumor or plasma, had lower PFS (HR 1.792, 95% CI 1.061–3.02

Cordeiro, S, Oliveira {BB }, Valente R, Ferreira D, Luz A, Baptista {PV}, Fernandes {AR}.  2024.  Breaking the mold: 3D cell cultures reshaping the future of cancer research. Frontiers in Cell and Developmental Biology. 12: Frontiers Media Abstract

Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.

2023
Silva, MA, Fernandes AP, Turner DL, Salgueiro CA.  2023.  A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments. International Journal of Molecular Sciences. 24, Number 8 AbstractWebsite

Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 ( 42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C ( 11 kDa/three hemes) and D ( 10 kDa/three hemes), as well as for bi-domain CD ( 21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes.

2022
Nuez-Martínez, M, Queralt-Martín M, Muñoz-Juan A, Aguilella {VM }, Laromaine A, Teixidor F, Viñas C, Pinto {CG }, Pinheiro T, Guerreiro {JF }, Mendes F, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Valic S, Marques F.  2022.  Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma, dec. Journal of Materials Chemistry B. 10:9794–9815., Number 47: RSC - Royal Society of Chemistry Abstract

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]− and [8,8′-I2-o-FESAN]−), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.

Santos, MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Pessoa JC.  2022.  Binding of VIVO2+, VIVOL, VIVOL2 and VVO2L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications, 2022. Chemistry – A European JournalChemistry – A European Journal. 28(40):e202200105.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIVO2+ and VIVOL2+, where L=2,2?-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIVO(picolinato)2 and VVO2(phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin?VVO2(phen) and trypsin?VIVO(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium?protein interactions.

Isufi, B, Relvas JP, Marchão C, Ramos A.  2022.  Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading. Engineering Structures. 264(August 2022):114471. AbstractWebsite

Reinforced concrete flat slabs are used worldwide in multi-story buildings. In these slabs, the design is often governed by punching shear and serviceability. The mitigation of these issues during design usually leads to increased raw material consumption and costs. Previous studies have shown that using Fiber Reinforced Concrete (FRC) or High-Strength Concrete (HSC) only at the vicinity of the column, while casting the rest of the slab with Normal Strength Concrete (NSC), can lead to an improved behavior under gravity loads in terms of both serviceability and ultimate capacity. Motivated by these results and the scarcity of previous tests, the present paper experimentally investigates the applicability of High-Performance Fiber Reinforced Concrete (HPFRC) as an alternative material that can be seen as an improvement over FRC and HSC, allowing a combination of ductility and strength. In addition, the HPFRC used in this paper is self-compacting, thus reducing the labor costs associated with concrete vibration. Five 150 mm thick flat slabs were tested under monotonically increasing punching load. The experimental variables were the flexural reinforcement ratio and the extent of the HPFRC zone. One of the specimens was cast only with NSC and served as a reference slab. Results show that the solution was effective for both flexural reinforcement ratios considered. Cracking load, maximum load, as well as the displacement capacity were increased significantly, even for a small extent of HPFRC (1.5 times the effective depth from the face of the column). Regarding the ultimate load capacity, it was observed an increase of 44% to 58% for the specimens with lower reinforcement ratio (0.64%) and between 15%–21% for the specimens with higher reinforcement ratio (0.96%). The results indicate that the use of HPFRC is a promising solution regarding both serviceability and ultimate limit state design of reinforced concrete flat slabs under gravity loading, with obvious advantages in material savings and labor costs.

2021
Pedrosa, P, Baptista {PV}, Fernandes {AR}, Guerra M.  2021.  Benchtop X-ray fluorescence imaging as a tool to study gold nanoparticle penetration in 3D cancer spheroids, jul. RSC Advances. 11:26344–26353., Number 42: RSC - Royal Society of Chemistry Abstract

The use of nanomaterials to improve medical diagnostics and therapeutics has been rapidly increasing. Among these materials are gold nanoparticles, which can be functionalized to target specific cells, acting as nanovectors for drug delivery, enhanced contrast agents as well as other targeted therapies. Au nanoparticles are very useful as they selectively accumulate in tumour sites due to the enhanced permeability-retention effect. There is however little information about the spatial distribution of the nanoparticles within tumours, which might hinder efficient therapies. In this study, X-ray fluorescence was used to investigate the diffusion of gold nanoparticles in cancer cell spheroids mimicking true tumour growth. Functionalization of the nanoparticles has the effect of allowing better diffusion into and out of the spheroid, while those nanoparticles that are only partially covered rapidly formed aggregates. This clustering led to size exclusion during transport within the tumour, changing its distribution profile while greatly increasing the nanoparticle concentration.

Duarte, VR, Rodrigues TA, Machado MA.  2021.  Benchmarking of Nondestructive Testing for Additive Manufacturing. 3D Printing and Additive Manufacturing. AbstractWebsite

Defect detection in additive manufacturing (AM) is of paramount importance to improve the reliability of products. Nondestructive testing is not yet widely used for defect detection. The main challenges are a lack of standards and methods, the types and location of defects, and the complex geometry of many parts. During selective laser melting (SLM), several types of defects can occur such as porosity, cracking, and lack of fusion. In this study, several nondestructive tests were conducted in a highly complex shaped part in AISI 316L stainless steel with real defects manufactured by SLM. Two additional artificial defects (one horizontal and one flat bottom hole) were produced and the defect detectability was evaluated. The techniques used were as follows: dye penetrant, infrared thermography, immersion ultrasonic, eddy current, and X-ray microcomputed tomography to assess different types of defects in the as-built part. We conclude that no single technique can detect every type of defect, although multiple techniques provide complementary and redundant information to critically evaluate the integrity of the parts. This approach is fundamental for improving the reliability of defect detection, which will help expand the potential for using AM to produce parts for critical structural applications.

Ramanaiaha, SV, Cordas CM, Matias SC, Reddyd MV, Leitão JH, Fonseca LP.  2021.  Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis. Biotechnology Reports. 32:e00693.
2020
Portela, PC, Dantas JM, Salgueiro CA.  2020.  Backbone, side chain and heme resonance assignment of the triheme cytochrome PpcA from Geobacter metallireducens in the oxidized state, 2020. Biomol NMR Assign. 14(1):31-36. AbstractWebsite

The bacterium Geobacter metallireducens is capable of transferring electrons to the cell exterior, a process designated extracellular electron transfer. This mechanism allows the microorganism to reduce extracellular acceptors such as Fe(III) (hydr)oxides and water toxic and/or radioactive contaminants including Cr(VI) and U(VI). It is also capable of oxidizing waste water aromatic organic compounds being an important microorganism for bioremediation of polluted waters. Extracellular electron transfer also allows electricity harvesting from microbial fuel cells, a promising sustainable form of energy production. However, extracellular electron transfer processes in this microorganism are still poorly characterized. The triheme c-type cytochrome PpcA from G. metallireducens is abundant in the periplasm and is crucial for electron transfer between the cytoplasm and the cell’s exterior. In this work, we report near complete assignment of backbone, side chain and heme resonances for PpcA in the oxidized state that will permit its structure determination and identification of interactions with physiological redox partners.

Cordeiro, T, Paninho AB, Bernardo M, Matos I, Pereira CV, Serra AT, Matias A, Ventura MG.  2020.  Biocompatible locust bean gum as mesoporous carriers for naproxen delivery. Materials Chemistry and Physics. 239:121973. AbstractWebsite

The work reports the impregnation of naproxen into locust bean gum mesoporous matrixes with different textural properties. The matrixes were prepared through the dissolution of the biopolymer in water and in two ionic liquids (ILs): [bmim][Cl] and [C2OHmim][Cl] and dried with scCO2. The poor water-soluble pharmaceutical drug naproxen was loaded into the matrixes and the composites were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy and by differential scanning calorimetry; the results were compared with neat ILs and drug. The naproxen release from the matrixes was attempted at pH 7.4. Sustained release of naproxen in the different composites occurs, and consequently the naproxen release has lower rates compared with neat crystalline naproxen dissolution. Nevertheless, it was possible to observe small differences on release profiles for the studied composites. The higher release rate was observed for the composite where [bmim][Cl] was used as solvent, for which the calorimetric analysis revealed full amorphization of the incorporated drug. Cytotoxicity assays reveal that cellular viability in Caco-2 cells is preserved. This fact allied with the biocompatibility of locust bean gum allow for the composites potential application as naproxen controlled/sustained delivery systems with higher drug bioavailability achieved through naproxen amorphization.

2019
Teixeira, LR, Portela PC, Morgado L, Pantoja-Uceda D, Bruix M, Salgueiro CA.  2019.  Backbone assignment of cytochrome PccH, a crucial protein for microbial electrosynthesis in Geobacter sulfurreducens, 2019. Biomol NMR Assign. 13(2):321-326. AbstractWebsite

Microbial electrosynthesis is an emerging green technology that explores the capability of a particular group of microorganisms to drive their metabolism toward the production of hydrogen or value-added chemicals from electrons supplied by electrode surfaces. The cytochrome PccH showed the largest increase in transcription when electrons are supplied to Geobacter sulfurreducens biofilms. Gene knock-out experiments have shown that the electron transfer toward G. sulfurreducens cells was completely inhibited by the deletion of the gene encoding for cytochrome PccH. This identifies a crucial role for this protein in G. sulfurreducens microbial electrosynthesis mechanisms, which are currently unknown. In this work, we present the backbone (1H, 13C and 15N) and heme assignment for PccH in the oxidized state. The data obtained paves the way to identify and structurally map the molecular interaction regions between the cytochrome PccH and its physiological redox partners.

Alves-Barroco, C, Roma-Rodrigues C, Balasubramanian N, Guimaraes MA, Ferreira-Carvalho BT, Muthukumaran J, Nunes D, Fortunato E, Martins R, Santos-Silva T, Figueiredo AMS, Fernandes AR, Santos-Sanches I.  2019.  Biofilm development and computational screening for new putative inhibitors of a homolog of the regulatory protein BrpA in Streptococcus dysgalactiae subsp. dysgalactiae, 2019. Int J Med Microbiol. 309(3-4):169-181. AbstractWebsite

Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), a Lancefield group C streptococci (GCS), is a frequent cause of bovine mastitis. This highly prevalent disease is the costliest in dairy industry. Adherence and biofilm production are important factors in streptoccocal pathogenesis. We have previously described the adhesion and internalization of SDSD isolates in human cells and now we describe the biofilm production capability of this bacterium. In this work we integrated microbiology, imaging and computational methods to evaluate the biofilm production capability of SDSD isolates; to assess the presence of biofilm regulatory protein BrpA homolog in the biofilm producers; and to predict a structural model of BrpA-like protein and its binding to putative inhibitors. Our results show that SDSD isolates form biofilms on abiotic surface such as glass (hydrophilic) and polystyrene (hydrophobic), with the strongest biofilm formation observed in glass. This ability was mainly associated with a proteinaceous extracellular matrix, confirmed by the dispersion of the biofilms after proteinase K and trypsin treatment. The biofilm formation in SDSD isolates was also confirmed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Under SEM observation, VSD16 isolate formed cell aggregates during biofilm growth while VSD9 and VSD10 formed smooth and filmy layers. We show that brpA-like gene is present and expressed in SDSD biofilm-producing isolates and its expression levels correlated with the biofilm production capability, being more expressed in the late exponential phase of planktonic growth compared to biofilm growth. Fisetin, a known biofilm inhibitor and a putative BrpA binding molecule, dramatically inhibited biofilm formation by the SDSD isolates but did not affect planktonic growth, at the tested concentrations. Homology modeling was used to predict the 3D structure of BrpA-like protein. Using high throughput virtual screening and molecular docking, we selected five ligand molecules with strong binding affinity to the hydrophobic cleft of the protein, making them potential inhibitor candidates of the SDSD BrpA-like protein. These results warrant further investigations for developing novel strategies for SDSD anti-biofilm therapy.

A.Rocha, Sousa D, Ferreira I, Diniz MS.  2019.  Biochemical responses in Danio rerio following exposure to CdS and ZnS Quantum Dots. Annals of Medicine. 51:71-71.
Gomes, FO, Maia LB, Loureiro JA, Pereira MC, Delerue-Matos C, Moura I, Moura JJG, Morais S.  2019.  Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic bilayer nanocomposite. Bioelectrochem. 127:76-86.
Alves-Barroco, C, Roma-Rodrigues C, Balasubramanian N, Aparecida Guimarães M, Ferreira-Carvalho BT, Muthukumaran J, Nunes D, Fortunato E, Martins R, Santos-Silva T, Figueiredo AMS, Fernandes AR, Santos-Sanches I.  2019.  Biofilm development and computational screening for new putative inhibitors of a homolog of the regulatory protein BrpA in Streptococcus dysgalactiae subsp. dysgalactiae. International Journal of Medical Microbiology. 309:169-181., Number 3 AbstractWebsite

Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), a Lancefield group C streptococci (GCS), is a frequent cause of bovine mastitis. This highly prevalent disease is the costliest in dairy industry. Adherence and biofilm production are important factors in streptoccocal pathogenesis. We have previously described the adhesion and internalization of SDSD isolates in human cells and now we describe the biofilm production capability of this bacterium. In this work we integrated microbiology, imaging and computational methods to evaluate the biofilm production capability of SDSD isolates; to assess the presence of biofilm regulatory protein BrpA homolog in the biofilm producers; and to predict a structural model of BrpA-like protein and its binding to putative inhibitors. Our results show that SDSD isolates form biofilms on abiotic surface such as glass (hydrophilic) and polystyrene (hydrophobic), with the strongest biofilm formation observed in glass. This ability was mainly associated with a proteinaceous extracellular matrix, confirmed by the dispersion of the biofilms after proteinase K and trypsin treatment. The biofilm formation in SDSD isolates was also confirmed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Under SEM observation, VSD16 isolate formed cell aggregates during biofilm growth while VSD9 and VSD10 formed smooth and filmy layers. We show that brpA-like gene is present and expressed in SDSD biofilm-producing isolates and its expression levels correlated with the biofilm production capability, being more expressed in the late exponential phase of planktonic growth compared to biofilm growth. Fisetin, a known biofilm inhibitor and a putative BrpA binding molecule, dramatically inhibited biofilm formation by the SDSD isolates but did not affect planktonic growth, at the tested concentrations. Homology modeling was used to predict the 3D structure of BrpA-like protein. Using high throughput virtual screening and molecular docking, we selected five ligand molecules with strong binding affinity to the hydrophobic cleft of the protein, making them potential inhibitor candidates of the SDSD BrpA-like protein. These results warrant further investigations for developing novel strategies for SDSD anti-biofilm therapy.

Surra, E, Bernardo M, Lapa N, Esteves IAAC, Fonseca I, Mota JPB.  2019.  Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management. 249:109351. AbstractWebsite

Maize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs). In this context, a biorefinery is theoretically discussed in the present review, based on the idea that MCW, after proper pre-treatment is valorised as precursor of ACs and as co-substrate in AcoD for biomethane generation. This paper provides an overview on different scientific and technological aspects that can be involved in the development of the proposed biorefinery; the major topics considered in this work are the following ones: (i) the most suitable pre-treatments of MCW prior to AcoD; (ii) AcoD process with regard to the critical parameters resulting from MCW pre-treatments; (iii) production of ACs using MCW as precursor, with the aim to use these ACs in biogas conditioning (H2S removal) and upgrading (biomethane production), and (iv) an overview on biogas upgrading technologies.

2018
Portela, PC, Fernandes TM, Dantas JM, Ferreira MR, Salgueiro CA.  2018.  Biochemical and functional insights on the triheme cytochrome PpcA from Geobacter metallireducens. Archives of Biochemistry and Biophysics. 644:8-16. AbstractWebsite

G. metallireducens bacterium has highly versatile respiratory pathways that provide the microorganism an enormous potential for many biotechnological applications. However, little is known about the structural and functional properties of its electron transfer components. In this work, the periplasmic cytochrome PpcA from G. metallireducens was studied in detail for the first time using complementary biophysical techniques, including UV–visible, CD and NMR spectroscopy. The results obtained showed that PpcA contains three low-spin c-type heme groups with His-His axial coordination, a feature also observed for its homologue in G. sulfurreducens. However, despite the high sequence homology between the two cytochromes, important structural and functional differences were observed. The comparative analysis of the backbone, side chain and heme substituents NMR signals revealed differences in the relative orientation of the hemes I and III. In addition, redox titrations followed by visible spectroscopy showed that the redox potential values for PpcA from G. metallireducens (−78 and −93 mV at pH 7 and 8, respectively) are considerably less negative. Overall, this study provides biochemical and biophysical data of a key cytochrome from G. metallireducens, paving the way to understand the extracellular electron transfer mechanisms in these bacteria.

Ferreira, MR, Salgueiro CA.  2018.  Biomolecular Interaction Studies Between Cytochrome PpcA From Geobacter sulfurreducens and the Electron Acceptor Ferric Nitrilotriacetate (Fe-NTA). Frontiers in Microbiology. 9:2741. AbstractWebsite

Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium that exhibits an enormous respiratory versatility, including the utilization of several toxic and radioactive metals as electron acceptors. This versatility is also replicated in the capability of the most abundant cytochrome in G. sulfurreducens, the periplasmic triheme cytochrome PpcA, to reduce uranium, chromium and other metal ions. From all possible electron transfer pathways in G. sulfurreducens, those involved in the iron reduction are the best characterized to date. In a previous work we provided structural evidence for the complex interface established between PpcA and the electron acceptor Fe(III)-citrate. However, genetic studies suggested that this acceptor is mainly reduced by outer membrane cytochomes. In the present work, we used UV-visible measurements to demonstrate that PpcA is able to directly reduce the electron acceptor ferric nitrilotriacetic acid (Fe-NTA), a more outer membrane permeable iron chelated form. In addition, the molecular interactions between PpcA and Fe-NTA were probed by Nuclear Magnetic Resonance (NMR) spectroscopy. The NMR spectra obtained for natural abundance and 15N-enriched PpcA samples in the absence and presence of Fe-NTA showed that the interaction is reversible and encompasses a positively charged surface region located in the vicinity of the heme IV. Overall, the study provides for the first time a clear illustration of the formation of an electron transfer complex between PpcA and a readily outer-membrane permeable iron chelated form. The structural and functional relationships obtained explain how a single cytochrome is designed to effectively interact with a wide range of G. sulfurreducens electron acceptors, a feature that can be explored for optimal bioelectrochemical applications.

2017
Mendoza, J, Basilio N, Dangles O, Mora N, Al Bittar S, Pina F.  2017.  Binding of the five multistate species of the anthocyanin analog 7-beta-D-glucopyranosyloxy-4'-hydroxyflavylium to the beta-cyclodextrin derivative captisol, 2017. Dyes and Pigments. 143:479-487. AbstractWebsite
n/a
João, C, Echeverria C, Velhinho A, Silva JC, Godinho MH, Borges JP.  2017.  Bio-inspired production of chitosan/chitin films from liquid crystalline suspensions. Carbohydrate polymers. 155:372-381. AbstractWebsite

Inspired by chitin based hierarchical structures observed in arthropods exoskeleton, this work reports the capturing of chitin nanowhiskers’ chiral nematic order into a chitosan matrix. For this purpose, highly crystalline chitin nanowhiskers (CTNW) with spindle-like morphology and average aspect ratio of 24.9 were produced by acid hydrolysis of chitin. CTNW were uniformly dispersed at different concentrations in aqueous suspensions. The suspensions liquid crystalline phase domain was determined by rheological measurements and polarized optical microscopy (POM). Chitosan (CS) was added to the CTNW isotropic, biphasic and anisotropic suspensions and the solvent was evaporated to allow films formation. The Films’ morphologies as well as the mechanical properties were explored. A correlation between experimental results and a theoretical model, for layered matrix’ structures with fibers acting as a reinforcement agent, was established. The results evidence the existence of two different layered structures, one formed by chitosan layers induced by the presence of chitin and another formed by chitin nanowhiskers layers. By playing on the ratio chitin/chitosan one layered structure or the other can be obtained allowing the tunning of materials’ mechanical properties.

Moura, I, Maia LB, Pauleta SR, Moura JJG.  2017.  A bird’s-eye view of denitrification in relation to the nitrogen cycle. Metalloenzymes in Denitrification: Applications and Environmental Impacts, RSC Metallobiology Series No. 9 (ISBN: 978-1-78262-376-2).. (Moura, I., Moura, J. J. G., Pauleta, S. R., Maia, L. B., Eds.).:1-10., Cambridge: Royal Society of Chemistryn_cycle-rsc_book-denitrification-chap_1.pdf
2016
Cordeiro, M, Giestas L, Lima {JC }, Baptista {PMV }.  2016.  BioCode gold-nanobeacon for the detection of fusion transcripts causing chronic myeloid leukemia, may. Journal of Nanobiotechnology. 14, Number 1: BioMed Central (BMC) Abstract

BACKGROUND: Gold-nanobeacons (Au-nanobeacons) have proven to be versatile systems for molecular diagnostics and therapeutic actuators. Here, we present the development and characterization of two gold nanobeacons combined with Förster resonance energy transfer (FRET) based spectral codification for dual mode sequence discrimination. This is the combination of two powerful technologies onto a single nanosystem.RESULTS: We proved this concept to detect the most common fusion sequences associated with the development of chronic myeloid leukemia, e13a2 and e14a2. The detection is based on spectral shift of the donor signal to the acceptor, which allows for corroboration of the hybridization event. The Au-nanobeacon acts as scaffold for detection of the target in a homogenous format whose output capability (i.e. additional layer of information) is potentiated via the spectral codification strategy.CONCLUSIONS: The spectral coded Au-nanobeacons permit the detection of each of the pathogenic fusion sequences, with high specificity towards partial complementary sequences. The proposed BioCode Au-nanobeacon concept provides for a nanoplatform for molecular recognition suitable for cancer diagnostics.