Pauleta, SR, Guerlesquin F, Goodhew CF, Devreese B, Van Beeumen J, Pereira AS, Moura I, Pettigrew GW.
2004.
Paracoccus pantotrophus pseudoazurin is an electron donor to cytochrome c peroxidase, Sep 7. Biochemistry. 43:11214-11225., Number 35
AbstractThe gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic- strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase.
Pauleta, SR, Cooper A, Nutley M, Errington N, Harding S, Guerlesquin F, Goodhew CF, Moura I, Moura JJ, Pettigrew GW.
2004.
A copper protein and a cytochrome bind at the same site on bacterial cytochrome c peroxidase, Nov 23. Biochemistry. 43:14566-76., Number 46
AbstractPseudoazurin binds at a single site on cytochrome c peroxidase from Paracoccus pantotrophus with a K(d) of 16.4 microM at 25 degrees C, pH 6.0, in an endothermic reaction that is driven by a large entropy change. Sedimentation velocity experiments confirmed the presence of a single site, although results at higher pseudoazurin concentrations are complicated by the dimerization of the protein. Microcalorimetry, ultracentrifugation, and (1)H NMR spectroscopy studies in which cytochrome c550, pseudoazurin, and cytochrome c peroxidase were all present could be modeled using a competitive binding algorithm. Molecular docking simulation of the binding of pseudoazurin to the peroxidase in combination with the chemical shift perturbation pattern for pseudoazurin in the presence of the peroxidase revealed a group of solutions that were situated close to the electron-transferring heme with Cu-Fe distances of about 14 A. This is consistent with the results of (1)H NMR spectroscopy, which showed that pseudoazurin binds closely enough to the electron-transferring heme of the peroxidase to perturb its set of heme methyl resonances. We conclude that cytochrome c550 and pseudoazurin bind at the same site on the cytochrome c peroxidase and that the pair of electrons required to restore the enzyme to its active state after turnover are delivered one-by-one to the electron-transferring heme.
Bursakov, SA, Gavel OY, Di Rocco G, Lampreia J, Calvete J, Pereira AS, Moura JJ, Moura I.
2004.
Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, May. J Inorg Biochem. 98:833-40., Number 5
AbstractAn orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS(4)(2-) moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed.
Brondino, CD, Passeggi MC, Caldeira J, Almendra MJ, Feio MJ, Moura JJ, Moura I.
2004.
Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria, Mar. J Biol Inorg Chem. 9:145-51., Number 2
AbstractWe report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.
Bursakov, SA, Gavel OY, Di Rocco G, Lampreia J, Calvete J, Pereira AS, Moura JJG, Moura I.
2004.
Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, Jun. Journal Of Inorganic Biochemistry. {98}:{833-840}., Number {5}, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA: ELSEVIER SCIENCE INC
AbstractAn orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S2MoS2CuS2MoS2] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS42- moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed. (C) 2003 Elsevier Inc. All rights reserved.
Pinho, D, Besson S, Brondino CD, de Castro B, Moura I.
2004.
Copper-containing nitrite reductase from Pseudomonas chlororaphis DSM 50135 - Evidence for modulation of the rate of intramolecular electron transfer through nitrite binding to the type 2 copper center, Jun. European Journal of Biochemistry. 271:2361-2369., Number 12
AbstractThe nitrite reductase (Nir) isolated from Pseudomonas chlororaphis DSM 50135 is a blue enzyme, with type 1 and type 2 copper centers, as in all copper-containing Nirs described so far. For the first time, a direct determination of the reduction potentials of both copper centers in a Cu-Nir was performed: type 2 copper (T2Cu), 172 mV and type 1 copper (T1Cu), 298 mV at pH 7.6. Although the obtained values seem to be inconsistent with the established electron-transfer mechanism, EPR data indicate that the binding of nitrite to the T2Cu center increases its potential, favoring the electron-transfer process. Analysis of the EPR spectrum of the turnover form of the enzyme also suggests that the electron-transfer process between T1Cu and T2Cu is the fastest of the three redox processes involved in the catalysis: (a) reduction of T1Cu; (b) oxidation of T1Cu by T2Cu; and (c) reoxidation of T2Cu by NO2-. Electrochemical experiments show that azurin from the same organism can donate electrons to this enzyme.