Publications

Export 3 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Faria, P, Duarte P, Barbosa D, Ferreira I.  2017.  New composite of natural hydraulic lime mortar with graphene oxide. Construction and Building Materials. 156:1150-1157. AbstractWebsite

Recent studies show the incorporation of graphene oxide (GO) in cement composites. But these composites are frequently incompatible with original materials for building rehabilitation. To overcome this limitation, natural hydraulic lime mortars were used as matrix, and the influence of GO percentage and type of mixing was investigated. The influence on the microstructure, mechanical and physical properties was assessed. The best results were obtained with dispersed GO at concentrations of 0.05% and 0.1%. A slight improvement of mechanical and physical characteristics was achieved. This could lead to new mortars with improved properties that can be used for building rehabilitation.

Pérez-Mayoral, E, Matos I, Bernardo M, Fonseca IM.  2019.  New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts. 9, Number 2 AbstractWebsite

The efficiency of porous carbons in fine chemical synthesis, among other application fields, has been demonstrated since both the porous structure and chemical surface provide the appropriated chemical environment favoring a great variety of relevant chemical transformations. In recent years, metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as interesting opportunities in the preparation of porous carbons with improved physico-chemical properties. Direct calcination of MOFs or COFs, in the presence or not of others carbon or heteroatom sources, could be considered an easy and practical approach for the synthesis of highly dispersed heteroatom-doped porous carbons but also new porous carbons in which single atoms of metallic species are present, showing a great development of the porosity; both characteristics of supreme importance for catalytic applications. The goal of this review is to provide an overview of the traditional methodologies for the synthesis of new porous carbon structures together with emerging ones that use MOFs or COFs as carbon precursors. As mentioned below, the catalytic application in fine chemical synthesis of these kinds of materials is at present barely explored, but probably will expand in the near future.

Surra, E, Nogueira MC, Bernardo M, Lapa N, Esteves I, Fonseca I.  2019.  New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Management. 94:136-145. AbstractWebsite

Two activated carbons (ACs) were prepared by physical activation of Maize Cob Waste (MCW) with CO2, during 2 and 3 h (MCW(PA)2h and MCW(PA)3h, respectively). Two other ACs were prepared by chemical activation: a) MCW(LD) – MCW was impregnated with anaerobic liquid digestate (LD) and carbonized under N2 atmosphere; and b) CAR-MCW(LD) – previously carbonized MCW was impregnated with LD and carbonized under N2 atmosphere. All ACs were fully characterized for textural and chemical properties, and then used in dynamic H2S removal assays from real biogas samples. Regarding H2S removal, the ACs that were physically activated behaved much better than the impregnated ones: MCW(PA)3h and MCW(PA)2h showed H2S uptake capacities of 15.5 and 0.65 mg g−1, respectively, while MCW(LD) and CAR-MCW(LD) showed values of 0.47 and 0.25 mg g−1, respectively. This may indicate that textural properties (surface area and microporosity) are more important than mineral content in H2S removal. Effectively, both surface area and micropore volume were much higher for the samples of MCW(PA)3h (SBET = 820 m2 g−1 and Vmicro = 0.32 cm3 g−1) and MCW(PA)2h (SBET = 630 m2 g−1 and Vmicro = 0.21 cm3 g−1) than for the ACs that were chemically activated (SBET = 38.0 m2 g−1 and Vmicro = 0.01 cm3 g−1 for MCW(LD); SBET = 8.0 m2 g−1 and Vmicro = 0.01 cm3 g−1 for CAR-MCW(LD)). High oxygen content in MCW(PA)3h favoured the catalytic oxidation reaction of H2S, promoting its removal. The use of MCW as precursor and LD as activating agent of the ACs may contribute for the integrated management of maize wastes and to diversify the applications of anaerobic digestate.