Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
R
Rijo, B, Lemos F, Fonseca I, Vilelas A.  2020.  Development of a model for an industrial acetylene hydrogenation reactor using plant data – Part I. Chemical Engineering Journal. 379:122390. AbstractWebsite

In this work, a dynamic model of an industrial acetylene hydrogenation reactor with a front-end configuration was developed, based on plant operation data. This type of reactor operates in transient state, not only due to the natural fluctuations in operating conditions but also due to the effects caused by the deactivation of the catalyst. To develop the dynamic model of the acetylene hydrogenation reactor a thorough study of the effect of operating conditions was performed; the influence of variables such as the inlet temperature of the 1st reactor, the flowrate, carbon monoxide concentration, on the activity, selectivity and stability of the catalyst was examined by choosing adequate periods of the operation of the reactor. To understand the reaction mechanism of this system, several published kinetics were tested but only one was finally fitted to the industrial data, to interpret the operation of the acetylene hydrogenation reactor. A set of operation periods was used to develop the model which was then validated by applying the model to a different set of operation periods. As a conclusion, the dynamic model that was developed and validated, using actual plant operation data, was able to adequately describe the outlet temperatures of the three reactors in the system as well as the outlet acetylene concentration of the 3rd reactor.

Risso, R, Ferraz P, Meireles S, Fonseca I, Vital J.  2018.  Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Applied Catalysis A: General. 567:56-64. AbstractWebsite

Calcium oxide (CaO) catalysts derived from waste shells of egg, oyster and clam were prepared and used in the methanolysis of soybean oil. Eggshells were subjected to ultrasound irradiation and mollusc shells were subjected to calcination-hydration-calcination cycles to increase the surface area of CaO and improve its catalytic activity. The catalysts were characterized by XRD, TPD-CO2, TG-DSC, DLS and N2 adsorption, while the catalytic activity for the methanolysis of soybean oil was evaluated. Five hours of sonication reduced the CaO particle size by 34%, which resulted in a 56% increase in the activity. Two cycles of hydration-dehydration applied to the material obtained by calcination of oyster shells provided CaO with 27 m2 g−1. The transesterification rate was 2.5 times higher than that obtained with the untreated sample. After treatments, highly active CaO was obtained which indicates its enormous potential for biodiesel production. A kinetic model assuming the adsorption of methoxide anions on the surface of CaO particles was proposed.

Rodrigues, ARF, Maia MRG, Cabrita ARJ, Oliveira HM, Bernardo M, Lapa N, Fonseca I, Trindade H, Pereira JL, Fonseca AJM.  2020.  Assessment of potato peel and agro-forestry biochars supplementation on in vitro ruminal fermentation. PeerJ. 8:e9488. AbstractWebsite

Background The awareness of environmental and socio-economic impacts caused by greenhouse gas emissions from the livestock sector leverages the adoption of strategies to counteract it. Feed supplements can play an important role in the reduction of the main greenhouse gas produced by ruminants—methane (CH\textsubscript{4}). In this context, this study aims to assess the effect of two biochar sources and inclusion levels on rumen fermentation parameters \textit{in vitro}. Methods Two sources of biochar (agro-forestry residues, AFB, and potato peel, PPB) were added at two levels (5 and 10%, dry matter (DM) basis) to two basal substrates (haylage and corn silage) and incubated 24-h with rumen inocula to assess the effects on CH\textsubscript{4} production and main rumen fermentation parameters \textit{in vitro}. Results AFB and PPB were obtained at different carbonization conditions resulting in different apparent surface areas, ash content, pH at the point of zero charge (pHpzc), and elemental analysis. Relative to control (0% biochar), biochar supplementation kept unaffected total gas production and yield (mL and mL/g DM, \textit{p} = 0.140 and \textit{p} = 0.240, respectively) and fermentation pH (\textit{p} = 0.666), increased CH\textsubscript{4}production and yield (mL and mL/g DM, respectively, \textit{p} = 0.001) and ammonia-N (NH\textsubscript{3}-N, \textit{p} = 0.040), and decreased total volatile fatty acids (VFA) production (\textit{p} < 0.001) and H\textsubscript{2} generated and consumed (\textit{p} ≤ 0.001). Biochar sources and inclusion levels had no negative effect on most of the fermentation parameters and efficiency. Acetic:propionic acid ratio (\textit{p} = 0.048) and H\textsubscript{2} consumed (\textit{p} = 0.019) were lower with AFB inclusion when compared to PPB. Biochar inclusion at 10% reduced H\textsubscript{2} consumed (\textit{p} < 0.001) and tended to reduce total gas production (\textit{p} = 0.055). Total VFA production (\textit{p} = 0.019), acetic acid proportion (\textit{p} = 0.011) and H\textsubscript{2} generated (\textit{p} = 0.048) were the lowest with AFB supplemented at 10%, no differences being observed among the other treatments. The basal substrate affected most fermentation parameters independently of biochar source and level used. Discussion Biochar supplementation increased NH\textsubscript{3}-N content, \textit{iso}-butyric, \textit{iso}-valeric and valeric acid proportions, and decreased VFA production suggesting a reduced energy supply for microbial growth, higher proteolysis and deamination of substrate N, and a decrease of NH\textsubscript{3}-N incorporation into microbial protein. No interaction was found between substrate and biochar source or level on any of the parameters measured. Although AFB and PPB had different textural and compositional characteristics, their effects on the rumen fermentation parameters were similar, the only observed effects being due to AFB included at 10%. Biochar supplementation promoted CH\textsubscript{4} production regardless of the source and inclusion level, suggesting that there may be other effects beyond biomass and temperature of production of biochar, highlighting the need to consider other characteristics to better identify the mechanism by which biochar may influence CH\textsubscript{4} production.