Publications

Export 19 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
A
Dias, D, Bernardo M, Lapa N, Pinto F, Matos I, Fonseca I.  2018.  Activated carbons from the Co-pyrolysis of rice wastes for Cr(III) removal. Chemical Engineering Transactions. 65:601-606.
Dias, D, Bernardo M, Matos I, Fonseca I, Pinto F, Lapa N.  2020.  Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. Journal of Cleaner Production. 267:121993. AbstractWebsite

Chromium is one of the most important raw materials for the European Union. Adsorption has become an important process for the recovery of metals from wastewaters, which has led to a demand for low-cost and eco-friendly adsorbents. The objective of this work was to use new and renewable carbon-based adsorbents from rice wastes in the removal/recovery of Cr(III) from synthetic and real wastewaters. Rice wastes were submitted to co-pyrolysis and the resulting char was optimized through physical and/or chemical activations/treatments. A commercial activated carbon was used for comparison purposes. All adsorbents were characterized (including an ecotoxicity test for the char precursor) and submitted to Cr(III) removal assays from a synthetic solution, in which two solid/liquid ratios (S/L) were tested (5 and 10 g/L). The CO2 activated carbon at a S/L = 5 g/L was the biomass-derived adsorbent that performed better, obtaining a maximum Cr(III) uptake capacity of 9.23 mg/g comparable to the one obtained by the commercial adsorbent at the same S/L (9.80 mg/g). The good results on this biomass-derived carbon were due to the effective volatile matter removal during the activation (from 22.7 to 4.25% w/w), which increased both surface area (from <5.0 to 325 m2/g) and ash content (from 30.0 to 40.4% w/w), allowing an increase in Cr(III) removal due to ion exchange mechanism and porosity development. The best adsorbent, under optimized conditions, was also applied to a chromium rich industrial wastewater. The results obtained in this real case application demonstrated a competition effect due to the presence of other ions.

Godinho, D, Dias D, Bernardo M, Lapa N, Fonseca I, Lopes H, Pinto F.  2017.  Adding value to gasification and co-pyrolysis chars as removal agents of Cr3+. Journal of Hazardous Materials. 321:173-182. AbstractWebsite

The present work aims to assess the efficiency of chars, obtained from the gasification and co-pyrolysis of rice wastes, as adsorbents of Cr3+ from aqueous solution. GC and PC chars, produced in the gasification and co-pyrolysis, respectively, of rice husk and polyethylene were studied. Cr3+ removal assays were optimised for the initial pH value, adsorbent mass, contact time and Cr3+ initial concentration. GC showed a better performance than PC with about 100% Cr3+ removal, due to the pH increase that caused Cr precipitation. Under pH conditions in which the adsorption prevailed (pH<5.5), GC presented the highest uptake capacity (21.1mg Cr3+ g−1 char) for the following initial conditions: 50mg Cr3+ L−1; pH 5; contact time: 24h;L/S ratio: 1000mLg−1. The pseudo-second order kinetic model showed the best adjustment to GC experimental data. Both the first and second order kinetic models fitted well to PC experimental data. The ion exchange was the dominant phenomenon on the Cr3+ adsorption by GC sample. Also, this char significantly reduced the ecotoxicity of Cr3+ solutions for the bacterium Vibrio fischeri. GC char proved to be an efficient material to remove Cr3+ from aqueous solution, without the need for further activation.

Rodrigues, ARF, Maia MRG, Cabrita ARJ, Oliveira HM, Bernardo M, Lapa N, Fonseca I, Trindade H, Pereira JL, Fonseca AJM.  2020.  Assessment of potato peel and agro-forestry biochars supplementation on in vitro ruminal fermentation. PeerJ. 8:e9488. AbstractWebsite

Background The awareness of environmental and socio-economic impacts caused by greenhouse gas emissions from the livestock sector leverages the adoption of strategies to counteract it. Feed supplements can play an important role in the reduction of the main greenhouse gas produced by ruminants—methane (CH\textsubscript{4}). In this context, this study aims to assess the effect of two biochar sources and inclusion levels on rumen fermentation parameters \textit{in vitro}. Methods Two sources of biochar (agro-forestry residues, AFB, and potato peel, PPB) were added at two levels (5 and 10%, dry matter (DM) basis) to two basal substrates (haylage and corn silage) and incubated 24-h with rumen inocula to assess the effects on CH\textsubscript{4} production and main rumen fermentation parameters \textit{in vitro}. Results AFB and PPB were obtained at different carbonization conditions resulting in different apparent surface areas, ash content, pH at the point of zero charge (pHpzc), and elemental analysis. Relative to control (0% biochar), biochar supplementation kept unaffected total gas production and yield (mL and mL/g DM, \textit{p} = 0.140 and \textit{p} = 0.240, respectively) and fermentation pH (\textit{p} = 0.666), increased CH\textsubscript{4}production and yield (mL and mL/g DM, respectively, \textit{p} = 0.001) and ammonia-N (NH\textsubscript{3}-N, \textit{p} = 0.040), and decreased total volatile fatty acids (VFA) production (\textit{p} < 0.001) and H\textsubscript{2} generated and consumed (\textit{p} ≤ 0.001). Biochar sources and inclusion levels had no negative effect on most of the fermentation parameters and efficiency. Acetic:propionic acid ratio (\textit{p} = 0.048) and H\textsubscript{2} consumed (\textit{p} = 0.019) were lower with AFB inclusion when compared to PPB. Biochar inclusion at 10% reduced H\textsubscript{2} consumed (\textit{p} < 0.001) and tended to reduce total gas production (\textit{p} = 0.055). Total VFA production (\textit{p} = 0.019), acetic acid proportion (\textit{p} = 0.011) and H\textsubscript{2} generated (\textit{p} = 0.048) were the lowest with AFB supplemented at 10%, no differences being observed among the other treatments. The basal substrate affected most fermentation parameters independently of biochar source and level used. Discussion Biochar supplementation increased NH\textsubscript{3}-N content, \textit{iso}-butyric, \textit{iso}-valeric and valeric acid proportions, and decreased VFA production suggesting a reduced energy supply for microbial growth, higher proteolysis and deamination of substrate N, and a decrease of NH\textsubscript{3}-N incorporation into microbial protein. No interaction was found between substrate and biochar source or level on any of the parameters measured. Although AFB and PPB had different textural and compositional characteristics, their effects on the rumen fermentation parameters were similar, the only observed effects being due to AFB included at 10%. Biochar supplementation promoted CH\textsubscript{4} production regardless of the source and inclusion level, suggesting that there may be other effects beyond biomass and temperature of production of biochar, highlighting the need to consider other characteristics to better identify the mechanism by which biochar may influence CH\textsubscript{4} production.

B
Cordeiro, T, Paninho AB, Bernardo M, Matos I, Pereira CV, Serra AT, Matias A, Ventura MG.  2020.  Biocompatible locust bean gum as mesoporous carriers for naproxen delivery. Materials Chemistry and Physics. 239:121973. AbstractWebsite

The work reports the impregnation of naproxen into locust bean gum mesoporous matrixes with different textural properties. The matrixes were prepared through the dissolution of the biopolymer in water and in two ionic liquids (ILs): [bmim][Cl] and [C2OHmim][Cl] and dried with scCO2. The poor water-soluble pharmaceutical drug naproxen was loaded into the matrixes and the composites were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy and by differential scanning calorimetry; the results were compared with neat ILs and drug. The naproxen release from the matrixes was attempted at pH 7.4. Sustained release of naproxen in the different composites occurs, and consequently the naproxen release has lower rates compared with neat crystalline naproxen dissolution. Nevertheless, it was possible to observe small differences on release profiles for the studied composites. The higher release rate was observed for the composite where [bmim][Cl] was used as solvent, for which the calorimetric analysis revealed full amorphization of the incorporated drug. Cytotoxicity assays reveal that cellular viability in Caco-2 cells is preserved. This fact allied with the biocompatibility of locust bean gum allow for the composites potential application as naproxen controlled/sustained delivery systems with higher drug bioavailability achieved through naproxen amorphization.

C
Nogueira, M, Matos I, Bernardo M, Pinto F, Lapa N, Surra E, Fonseca I.  2019.  Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. C—Journal of Carbon Research. 5, Number 4 AbstractWebsite

A char produced from spent tire rubber showed very promising results as an adsorbent of Remazol Yellow (RY) from aqueous solutions. Spent tire rubber was submitted to a pyrolysis process optimized for char production. The obtained char was submitted to chemical, physical, and textural characterizations and, subsequently, applied as a low-cost adsorbent for dye (RY) removal in batch adsorption assays. The obtained char was characterized by relatively high ash content (12.9% wt), high fixed-carbon content (69.7% wt), a surface area of 69 m2/g, and total pore volume of 0.14 cm3/g. Remazol Yellow kinetic assays and modelling of the experimental data using the pseudo-first and pseudo-second order kinetic models demonstrated a better adjustment to the pseudo-first order model with a calculated uptake capacity of 14.2 mg RY/g char. From the equilibrium assays, the adsorption isotherm was fitted to both Langmuir and Freundlich models; it was found a better fit for the Langmuir model to the experimental data, indicating a monolayer adsorption process with a monolayer uptake capacity of 11.9 mg RY/g char. Under the experimental conditions of the adsorption assays, the char presented positive charges at its surface, able to attract the deprotonated sulfonate groups (SO3−) of RY; therefore, electrostatic attraction was considered the most plausible mechanism for dye removal.

Dias, D, Lapa N, Bernardo M, Ribeiro W, Matos I, Fonseca I, Pinto F.  2018.  Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology. 266:139-150. AbstractWebsite

Blends of rice waste streams were submitted to co-gasification assays. The resulting chars (G1C and G2C) were characterized and used in Cr(III) removal assays from a synthetic solution. A Commercial Activated Carbon (CAC) was used for comparison purposes. The chars were non-porous materials mainly composed by ashes (68.3–92.6% w/w). The influences of adsorbent loading (solid/liquid ratio – S/L) and initial pH in Cr(III) removal were tested. G2C at a S/L of 5 mg L−1 and an initial pH of 4.50 presented an uptake capacity significantly higher than CAC (7.29 and 2.59 mg g−1, respectively). G2C was used in Cr(III) removal assays from an industrial wastewater with Cr(III) concentrations of 50, 100 and 200 mg L−1. Cr(III) removal by precipitation (uptake capacity ranging from 11.1 to 14.9 mg g−1) was more effective in G2C, while adsorption (uptake capacity of 16.1 mg g−1) was the main removal mechanism in CAC.

E
Godino-Ojer, M, Milla-Diez L, Matos I, Durán-Valle CJ, Bernardo M, Fonseca IM, Pérez Mayoral E.  2018.  Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem. 10:5215-5223., Number 22 AbstractWebsite

Abstract This work reports for the first time a new series of promising porous catalytic carbon materials, functionalized with Lewis and Brønsted acid sites useful in the green synthesis of 2,3-dihydro-1H-1,5-benzodiazepine – nitrogen heterocyclic compounds. Benzodiazepines and derivatives are fine chemicals exhibiting interesting therapeutic properties. Carbon materials have been barely investigated in the synthesis of this type of compounds. Two commercial carbon materials were selected exhibiting different textural properties: i) Norit RX3 (N) as microporous sample and ii) mesoporous xerogel (X), both used as supports of ZrO2 (Zr) and ZrO2/SO42− (SZr). The supported SZr led to higher conversion values and selectivities to the target benzodiazepine. Both chemical and textural properties influenced significantly the catalytic performance. Particularly relevant are the results concerning the non-sulfated samples, NZr and XZr, that were able to catalyze the reaction leading to the target benzodiazepine with high selectivity (up to 80 %; 2 h). These results indicated an important role of the carbon own surface functional groups, avoiding the use of H2SO4. Even very low amounts of SZr supported on carbon reveal high activity and selectivity. Therefore, the carbon materials herein reported can be considered an efficient and sustainable alternative bifunctional catalysts for the benzodiazepine synthesis.

Mestre, AS, Nabiço A, Figueiredo PL, Pinto ML, Santos SMCS, Fonseca IM.  2016.  Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal. 286:538-548. AbstractWebsite

Clofibric acid is the metabolite and active principle of blood lipid regulators, it represents the class of acidic pharmaceuticals, and is one of the most persistent drug residues detected in the aquatic environment worldwide. This interdisciplinary work evaluates the effect of solution pH and water hardness in clofibric acid adsorption onto commercial activated carbons. Kinetic and equilibrium assays revealed that the highest clofibric acid removal efficiencies (>70%) were attained at pH 3, and that at pH 8 water hardness degree plays a fundamental role in the adsorption process. In hard water at pH 8 the removal efficiency values increased by 22 or 46% points depending on the carbon sample. Adsorbents’ textural properties also affect the adsorption process since for the microporous sample (CP) the increase of water hardness has a great influence in kinetic and equilibrium data, while for the micro+mesoporous carbon (VP) the variation of the water hardness promoted less significant changes. At pH 3 the increase of water hardness leads to changes in the adsorption mechanism of clofibric acid onto CP carbon signaled by a transition from an S-type to an L-type curve. At pH 8 the change from deionized water to hard water doubles the maximum adsorption capacity of sample CP (101.7mgg−1 vs 211.9mgg−1, respectively). The adsorption enhancement, with water hardness under alkaline conditions, was reasoned in terms of calcium complexation with clofibrate anion exposed by molecular modeling and conductivity studies. Ca2+ complexation by other acidic organic compounds may also occur, and should be considered, since it can play a fundamental role in improved design of water treatment processes employing activated carbons.

Fernandes, MJ, Moreira MM, Paíga P, Dias D, Bernardo M, Carvalho M, Lapa N, Fonseca I, Morais S, Figueiredo S, Delerue-Matos C.  2019.  Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresource Technology. 292:121973. AbstractWebsite

Twelve biochars from forest and agri-food wastes (pruning of Quercus ilex, Eucalyptus grandis, Pinus pinaster, Quercus suber, Malus pumila, Prunus spinosa, Cydonia oblonga, Eriobotrya japonica, Juglans regia, Actinidia deliciosa, Citrus sinensis and Vitis vinifera) were investigated as potential low-cost and renewable adsorbents for removal of a commonly used pharmaceutical, fluoxetine. Preliminary adsorption experiments allowed to select the most promising adsorbents, Quercus ilex, Cydonia oblonga, Eucalyptus, Juglans regia and Vitis vinifera pruning material. They were characterized by proximate, elemental and mineral analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, determination of specific surface area and pH at the point of zero charge. Batch and equilibrium studies were performed, and the influence of pH was evaluated. The equilibrium was reached in less than 15 min in all systems. The maximum adsorption capacity obtained was 6.41 mg/g for the Eucalyptus biochar, which also demonstrated a good behavior in continuous mode (packed column).

K
Lyubchik, S, Lygina E, Lyubchyk A, Lyubchik S, Loureiro JM, Fonseca IM, Ribeiro AB, Pinto MM, Figueiredo AMSá.  2016.  The Kinetic Parameters Evaluation for the Adsorption Processes at ``Liquid–Solid'' Interface. Electrokinetics Across Disciplines and Continents: New Strategies for Sustainable Development. (Ribeiro, Alexandra B., Mateus, Eduardo P., Couto, Nazaré, Eds.).:81–109., Cham: Springer International Publishing Abstract

The kinetic parameters of the adsorption process at ``liquid–solid'' interface have been evaluated through the sets of time-based experiments of the Cr(III) adsorption under varying temperature, initial metal concentration, and carbon loading for two sets of the commercially available activated carbons and their post-oxidized forms with different texture and surface functionality.

M
Ferreira, RC, Dias D, Fonseca I, Bernardo M, Pimenta JLCW, Lapa N, de Barros MASD.  2020.  Multi-component adsorption study by using bone char: modelling and removal mechanisms. Environmental Technology. :1-16.: Taylor & Francis AbstractWebsite
n/a
N
Pérez-Mayoral, E, Matos I, Bernardo M, Fonseca IM.  2019.  New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts. 9, Number 2 AbstractWebsite

The efficiency of porous carbons in fine chemical synthesis, among other application fields, has been demonstrated since both the porous structure and chemical surface provide the appropriated chemical environment favoring a great variety of relevant chemical transformations. In recent years, metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as interesting opportunities in the preparation of porous carbons with improved physico-chemical properties. Direct calcination of MOFs or COFs, in the presence or not of others carbon or heteroatom sources, could be considered an easy and practical approach for the synthesis of highly dispersed heteroatom-doped porous carbons but also new porous carbons in which single atoms of metallic species are present, showing a great development of the porosity; both characteristics of supreme importance for catalytic applications. The goal of this review is to provide an overview of the traditional methodologies for the synthesis of new porous carbon structures together with emerging ones that use MOFs or COFs as carbon precursors. As mentioned below, the catalytic application in fine chemical synthesis of these kinds of materials is at present barely explored, but probably will expand in the near future.

P
Godino-Ojer, M, Blazquez-García R, Matos I, Bernardo M, Fonseca IM, Pérez Mayoral E.  2020.  Porous carbons-derived from vegetal biomass in the synthesis of quinoxalines. Mechanistic insights. Catalysis Today. 354:90-99. AbstractWebsite

We report herein for the first-time acid biomass-derived carbons from vegetal biomass, with high developed porosity, prepared through integrating method comprising pyrolysis and surface phosphonation, able to efficiently catalyze the synthesis of quinoxalines from 1,2-diamines and α-hydroxi ketones, under aerobic conditions. The obtained results indicate that the reaction is mainly driven by a combination of acid function strength and textural properties in terms of conversion and selectivity. Furthermore, our experimental and theoretical observations suggest that the preferred reaction pathway for this transformation, in the presence of the investigated acid carbon catalysts, involves cascade reactions including imination reaction between reactants, successive imine-enamine and keto-enol tautomerisms, heterocyclization followed by dehydration, and aromatization. While the acid sites seem to be a relevant role in each reaction step, the system formed by activated carbon and molecular oxygen could be behind the last oxidative reaction to give the corresponding nitrogen heterocycles.

Dias, D, Lapa N, Bernardo M, Godinho D, Fonseca I, Miranda M, Pinto F, Lemos F.  2017.  Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials. Waste Management. 65:186-194. AbstractWebsite

Rice straw (RS), rice husk (RH) and polyethylene (PE) were blended and submitted to gasification and pyrolysis processes. The chars obtained were submitted to textural, chemical, and ecotoxic characterisations, towards their possible valorisation. Gasification chars were mainly composed of ashes (73.4–89.8wt%), while pyrolysis chars were mainly composed of carbon (53.0–57.6wt%). Silicon (Si) was the major mineral element in all chars followed by alkaline and alkaline-earth metal species (AAEMs). In the pyrolysis chars, titanium (Ti) was also a major element, as the feedstock blends contained high fractions of PE which was the main source of Ti. Gasification chars showed higher surface areas (26.9–62.9m2g−1) and some microporosity, attributed to porous silica. On the contrary, pyrolysis chars did not present a porous matrix, mainly due to their high volatile matter content. The gasification bed char produced with 100% RH, at 850°C, with O2 as gasification agent, was selected for further characterization. This char presented the higher potential to be valorised as adsorbent material (higher surface area, higher content of metal cations with exchangeable capacity, and lowest concentrations of toxic heavy metals). The char was submitted to an aqueous leaching test to assess the mobility of chemical species and the ecotoxic level for V. fischeri. It was observed that metallic elements were significantly retained in the char, which was attributed mainly to its alkaline character. This alkaline condition promoted some ecotoxicity level on the char eluate that was eliminated after the pH correction.

Agostinho, DAS, Paninho AI, Cordeiro T, Nunes AVM, Fonseca IM, Pereira C, Matias A, Ventura MG.  2020.  Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Materials Chemistry and Physics. 253:123290. AbstractWebsite

This work reports the synthesis of kappa-carrageenan aerogels using different dissolution and crosslinking media in order to evaluate its effects on the textural properties of the matrixes and further on the drug loading and release performance. The different aerogel samples were produced through the dissolution of the biopolymer in water with addition of potassium salts as crosslinking agents and, in two different ionic liquids (ILs) derived from imidazolium ion, being further dried with supercritical CO2. The samples were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Nitrogen Adsorption-Desorption Analysis, Thermogravimetry (TGA) and Differential Scanning Calorimetry (DSC). The synthesized samples presented surface areas similar to the carrageenan aerogels being their structure constituted mainly by meso and macropores. The absence of ionic liquid in samples was demonstrated by DSC analysis and was corroborated by the cytotoxicity assays which revealed that cellular viability in Caco-2 cells was preserved. Tetracycline was used as a model drug and loaded in two of the prepared aerogels samples. The release experiments were performed with the composites to test in vitro drug release at physiologic pH. With a higher macroporosity, the kappa-carrageenan aerogel prepared by dissolution into ionic liquid showed a higher loading capacity than the one prepared by dissolution into water and a slightly higher release rate. The matrixes were considered to present a good potential to be used as biocompatible carriers on drug controlled delivery.

R
Godinho, D, Nogueira M, Bernardo M, Dias D, Lapa N, Fonseca I, Pinto F.  2019.  Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes, Aug. Environmental Science and Pollution Research. 26:22723–22735., Number 22 AbstractWebsite

The aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice huskþinspace}+þinspace}corn cob (biochar 50CC) and rice huskþinspace}+þinspace}eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (ABETþinspace}=þinspace}63–144 m2 g−1), but a strong alkaline character, promoted by a high content of mineral matter (59.8{%} w/w of ashes for 50CC biochar and 81.9{%} w/w for 50ES biochar). The biochars were used for Cr(III) recovery from synthetic solutions by varying the initial pH value (3, 4, and 5), liquid/solid (L/S) ratio (100–500 mL g−1), contact time (1–120 h), and initial Cr(III) concentration (10–150 mg L−1). High Cr(III) removal percentages (around 100{%}) were obtained for both biochars, due to Cr precipitation, at low L/S ratios (100 and 200 mL g−1), for the initial pH 5 and initial Cr concentration of 50 mg L−1. Under the experimental conditions in which other removal mechanisms rather than precipitation occurred, a higher removal percentage (49.9{%}) and the highest uptake capacity (6.87 mg g−1) were registered for 50CC biochar. In the equilibrium, 50ES biochar presented a Cr(III) removal percentage of 27{%} with a maximum uptake capacity of 2.58 mg g−1. The better performance on Cr(III) recovery for the biochar 50CC was attributed to its better textural properties, as well as its higher cation exchange capacity.

S
Cordeiro, T, Castiñeira C, Mendes D, Florence Danède, Sotomayor J, Fonseca IM, Gomes da Silva M, Paiva A, Barreiros S, Cardoso MM, Viciosa MT, Correia NT, Dionisio M.  2017.  Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts. Molecular Pharmaceutics. 14:3164-3177., Number 9 AbstractWebsite
n/a