Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Batista, MKS, Mestre AS, Matos I, Fonseca IM, Carvalho AP.  2016.  Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Adv.. 6:45419-45427.: The Royal Society of Chemistry AbstractWebsite

Biodiesel production generates low particle size rapeseed waste (recovered from warehouse air filtration systems) that was herein explored as promising biomass precursor of chemically activated carbons. The influence of several experimental parameters on the porosity development was investigated. No benefit was observed when solution impregnation was made nor a significant dependence of the biomass : K2CO3 ratio was observed and{,} as expected{,} high porosity development was obtained only for treatments at 700 [degree]C. Microporous materials with apparent surface area around 1000 m2 g-1 were obtained comparing favorably with literature data regarding activated carbons from rapeseed processing by-products. A selected lab-made sample and two commercial carbons were tested as adsorbents of caffeine from aqueous solution. Although commercial materials present a quicker adsorption rate{,} regarding adsorption capacity the lab-made sample reaches the same value attained by a benchmark material. The regeneration tests made over the rapeseed derived carbon through heat treatments at 600 [degree]C for 1 hour under N2 flow proved that at least two exhaustion-regeneration cycles can be made since the material retains a caffeine adsorption capacity similar to that of the fresh carbon. Therefore{,} a waste management problem of biodiesel industry - rapeseed residue - can be transformed in a valuable material with promising properties for environmental remediation processes.

Bernardo, M, Correa CR, Ringelspacher Y, Becker GC, Lapa N, Fonseca I, Esteves IAAC, Kruse A.  2020.  Porous carbons derived from hydrothermally treated biogas digestate. Waste Management. 105:170-179. AbstractWebsite

Porous carbons from digestate-derived hydrochar were produced, characterized and their performance to reclaim phosphate from water was evaluated as a preliminary approach to demonstrate their practical application. In a first step, the digestate was converted into hydrochars through hydrothermal carbonization by using two different pH conditions: 8.3 (native conditions) and 3.0 (addition of H2SO4). The resulting hydrochars did not present significant differences. Consecutively, the hydrochars were activated with KOH to produce activated carbons with enhanced textural properties. The resulting porous carbons presented marked differences: the AC native presented a lower ash content (20.3 wt%) and a higher surface area (SBET = 1106 m2/g) when compared with the AC-H2SO4 (ash content = 43.7 wt% SBET = 503 m2/g). Phosphorus, as phosphate, is a resource present in significative amount in wastewater, causing serious problems of eutrophication. Therefore, the performance of the porous carbons samples to recover phosphate – P(PO43−) – from water was evaluated through exploitation assays that included kinetic studies. The lumped model presented a good fitting to the kinetic data and the obtained uptake capacities were the same for both carbons, 12 mg P(PO43−)/g carbon. Despite the poorer textural properties of AC-H2SO4, this carbon was richer in Ca, Al, Fe, K, and Mg cations which promoted the formation of mineral complexes with phosphate anions. The results obtained in this work are promising for the future development of P(PO43−) enriched carbons that can be used thereafter as biofertilizers in soil amendment applications.

Bernardo, M, Rodrigues S, Lapa N, Matos I, Lemos F, Batista MKS, Carvalho AP, Fonseca I.  2016.  High efficacy on diclofenac removal by activated carbon produced from potato peel waste, Aug. International Journal of Environmental Science and Technology. 13:1989–2000., Number 8 AbstractWebsite

In the present study, a novel porous carbon obtained by K2CO3 activation of potato peel waste under optimized conditions was applied for the first time as liquid-phase adsorbent of sodium diclofenac in parallel with a commercial activated carbon. The biomass-activated carbon presented an apparent surface area of 866 m2 g−1 and well-developed microporous structure with a large amount of ultramicropores. The obtained carbon presented leaching and ecotoxicological properties compatible with its safe application to aqueous medium. Kinetic data of laboratory-made and commercial sample were best fitted by the pseudo-second-order model. The commercial carbon presented higher uptake of diclofenac, but the biomass carbon presented the higher adsorption rate which was associated with its higher hydrophilic nature which favoured external mass transfer. Both adsorbents presented adsorption isotherms that were best fitted by Langmuir model. The biomass carbon and the commercial carbon presented adsorption monolayer capacities of 69 and 146 mg g−1, and Langmuir constants of 0.38 and 1.02 L mg−1, respectively. The better performance of the commercial sample was related to its slightly higher micropore volume, but the most remarkable effect was the competition of water molecules in the biomass carbon.

Bernardo, MMS, Madeira CAC, dos Santos Nunes NCL, Dias DACM, Godinho DMB, de Jesus Pinto MF, do Nascimento Matos IAM, Carvalho APB, de Figueiredo Ligeiro Fonseca IM.  2017.  Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars, Oct. Environmental Science and Pollution Research. 24:22698–22708., Number 28 AbstractWebsite

This work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5–81.5{%}), being their mineral content mainly composed of silicon (as silica) and potassium. The samples presented a strong basic character, which was related to its higher mineral oxides content. RCG char presented better textural properties with a higher apparent surface area (144 m2 g−1) and higher micropore content (V micro = 0.05 cm3 g−1). The alkaline character of both chars promoted high ecotoxicity levels on their aqueous eluates; however, the ecotoxic behaviour was eliminated after pH correction. Adsorption experiments showed that RG char presented higher uptake capacity for both tetracycline (12.9 mg g−1) and caffeine (8.0 mg g−1), indicating that textural properties did not play a major role in the adsorption process. For tetracycline, the underlying adsorption mechanism was complexation or ion exchange reactions with the mineral elements of chars. The higher affinity of RG char to caffeine was associated with the higher alkaline character presented by this char.

Bianchi, C, Ferreira LM, Loureiro J, Rodrigues A, Duarte P, Baptista AC, Ferreira IM.  2016.  Vanadium Pentoxide Alloyed with Graphite for Thin-Film Thermal Sensors, Mar. Journal of Electronic Materials. 45:1987–1991., Number 3 AbstractWebsite

The thermoelectric (TE) properties of vanadium pentoxide (V2O5) alloyed with graphite (G) were studied as a function of its incorporation percentage. Variable weight percentages of graphite powder (0–50{%}) were added to V2O5 powder and their mixtures were evaporated by a thermal evaporation technique to form thin films with a thickness in the range of 30–80 nm. In the infrared wavelength region, the transmittance of the obtained films increased as the G percentage was increased, while in the visible range, it decreased with G up to 10{%}. The TE properties were improved when G was in the range of 10–30{%}, while it decreased for the other percentages: Seebeck coefficient (S) changed from 0.6 mV/K to 0.9 mV/K and was zero with a G of 50{%}; the electrical conductivity varied slightly from 5 ($Ømega$m)−1 to 0.7 ($Ømega$m)−1 while the mobility improved from 0.07 cm2/V s to 1.5 cm2/V s and the respective carrier concentration was reduced, from 1 × 1018 cm−3 to 4 × 1016 cm−3. These films were applied as temperature sensors evaluating the thermovoltage as a function of thermal gradient between two electrodes, in which one was maintained at room temperature.