Publications

Export 56 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Santos, TG, Lopes N, MacHado M, Vilaça P, Miranda RM.  2014.  Surface reinforcement of AA5083-H111 by friction stir processing assisted by electrical current, 2014. Journal of Materials Processing Technology. 216:375-380.: Elsevier Ltd AbstractWebsite
n/a
Santos, TG, Miranda RM, Vilaça P, Teixeira JP, dos Santos J.  2011.  Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivity, 2011. Science and Technology of Welding and Joining. 16(7):630-635. AbstractWebsite
n/a
Santos, T, Vilaça P, Reis L, Quintino L, De Freitas M.  2008.  Advances in NDT techniques for friction stir welding joints of AA2024, 2008. TMS 2008 Annual Meeting Supplemental: Materials Processing and Properties. 3:27-32., New Orleans, LA Abstract
n/a
Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials. Journal of Materials Science and Technology. 35:360-368. AbstractWebsite

The use of non-destructive evaluation (NDE) techniques for assessing microstructural changes in processed materials is of particular importance as it can be used to assess, qualitatively, the integrity of any material/structure. Among the several NDE techniques available, electrical conductivity measurements using eddy currents attract great attention owing to its simplicity and reliability. In this work, the electrical conductivity profiles of friction stir processed Ti6Al4V, Cu, Pb, S355 steel and gas tungsten arc welded AISI 304 stainless steel were determined through eddy currents and four-point probe. In parallel, hardness measurements were also performed. The profiles matched well with the optical macrographs of the materials: while entering in the processed region a variation in both profiles was always observed. One particular advantage of electrical conductivity profiles over hardness was evident: it provides a better resolution of the microstructural alterations in the processed materials. Moreover, when thermomechanical processing induces microstructural changes that modify the magnetic properties of a material, eddy currents testing can be used to qualitatively determine the phase fraction in a given region of the material. A qualitative relation between electrical conductivity measurements and hardness is observed.

Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials, mar. Journal of Materials Science & Technology. 35:360–368., Number 3 AbstractWebsite

n/a

V
Vilaça, P, Santos TG, Rosado L, Miranda RM.  2014.  Innovative concept and application of EC probe for inspection of friction stir welds, 2014. International Journal of Microstructure and Materials Properties. 9(3-5):314-326.: Inderscience Enterprises Ltd. AbstractWebsite

n/a