Publications

Export 12 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Machado, MA, Rosado LFSG, Mendes NAM, Miranda RMM, dos Santos TJG.  2021.  New directions for inline inspection of automobile laser welds using non-destructive testing, sep. The International Journal of Advanced Manufacturing Technology. AbstractWebsite

An innovative pilot installation and eddy current testing (ECT) inspection system for laser-brazed joints is presented. The proposed system detects both surface and sub-surface welding defects operating autonomously and integrated with a robotized arm. Customized eddy current probes were designed and experimentally validated detecting pore defects with 0.13 mm diameter and sub-surface defects buried 1 mm deep. The integration of the system and the manufacturing process towards an Industry 4.0 quality control paradigm is also discussed.

Rosado, LS, Santos TG, Ramos PM, Vilaça P, Piedade M.  2015.  A new dual driver planar eddy current probe with dynamically controlled induction pattern, 2015. NDT and E International. 70:29-37.: Elsevier Ltd AbstractWebsite
n/a
Matos Filipe, L, Santos TG, Valtchev S, Pamies Teixeira J, Miranda RM.  2012.  New method employing the electrical impedance for monitoring mechanical damage evolution in glass-reinforced: Applications to riveted joints, 2012. Materials and Design. 42:25-31. AbstractWebsite
n/a
Santos, T, Vilaça P, dos Santos J, Quintino L.  2009.  A new NDT system for micro imperfections detection: Application to FSW and FSpW, 2009. Welding in the World. 53(SPECIAL ISSUE):361-366. AbstractWebsite
n/a
Santos, TG, Miranda RM, De Carvalho CCCR.  2014.  A new NDT technique based on bacterial cells to detect micro surface defects, 2014. NDT and E International. 63:43-49. AbstractWebsite
n/a
Rosado, L, Santos T, Piedade M, Ramos PM, Vilaça P.  2009.  New non-destructive test technique on metal inspection, 2009. 19th IMEKO World Congress 2009. 1:11-16., Lisbon Abstract
n/a
Dos Santos, TG, Ramos PM, Dos Santos Vilaça P.  2008.  Non destructive testing of Friction Stir Welding: Comparison of planar eddy current probes, 2008. 16th IMEKO TC4 International Symposium on Exploring New Frontiers of Instrumentation and Methods for Electrical and Electronic Measurements; 13th International Workshop on ADC Modelling and Testing - IMEKO TC4 - TC21 Joint Session. :507-512., Florence Abstract
n/a
Santos, TG, Sorger G, Vilaça P, Miranda RM.  2014.  A non-conventional technique for evaluating welded joints based on the electrical conductivity, 2014. 17th Conference of the European Scientific Association on Material Forming, ESAFORM 2014. 611-612:671-676., Espoo: Trans Tech Publications Ltd AbstractWebsite
n/a
Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials, mar. Journal of Materials Science & Technology. 35:360–368., Number 3 AbstractWebsite

n/a

Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials. Journal of Materials Science and Technology. 35:360-368. AbstractWebsite

The use of non-destructive evaluation (NDE) techniques for assessing microstructural changes in processed materials is of particular importance as it can be used to assess, qualitatively, the integrity of any material/structure. Among the several NDE techniques available, electrical conductivity measurements using eddy currents attract great attention owing to its simplicity and reliability. In this work, the electrical conductivity profiles of friction stir processed Ti6Al4V, Cu, Pb, S355 steel and gas tungsten arc welded AISI 304 stainless steel were determined through eddy currents and four-point probe. In parallel, hardness measurements were also performed. The profiles matched well with the optical macrographs of the materials: while entering in the processed region a variation in both profiles was always observed. One particular advantage of electrical conductivity profiles over hardness was evident: it provides a better resolution of the microstructural alterations in the processed materials. Moreover, when thermomechanical processing induces microstructural changes that modify the magnetic properties of a material, eddy currents testing can be used to qualitatively determine the phase fraction in a given region of the material. A qualitative relation between electrical conductivity measurements and hardness is observed.

Lopez, A, Bacelar R, Pires I, G.Santos T, PedroSousa J, Quintino L.  2018.  Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Additive Manufacturing. 21:298-306. AbstractWebsite

The present work addressed the challenges of identifying applicable Non-Destructive Testing (NDT) techniques suitable for inspection and materials characterization techniques for Wire and Arc Additive Manufacturing (WAAM) parts. With the view of transferring WAAM to the industry and qualifying the manufacturing process for applications such as structural components, the quality of the produced parts needs to be assured. Thus, the main objective of this paper is to review the main NDT techniques and assess the capability of detecting WAAM defects, for inspection either in a monitoring, in-process or post-process scenario. Radiography and ultrasonic testing were experimentally tested on reference specimens in order to compare the techniques capabilities. Metallographic, hardness and electrical conductivity analysis were also applied to the same specimens for material characterization. Experimental outcomes prove that typical WAAM defects can be detected by the referred techniques. The electrical conductivity measurement may complement or substitute some destructive methods used in AM processing.

Machado, MA, Rosado L, Pedrosa N, Vostner A, Miranda RM, Piedade M, Santos TG.  2017.  Novel eddy current probes for pipes: Application in austenitic round-in-square profiles of ITER. NDT&E International. 87:111-118. AbstractWebsite

Novel eddy current probes were developed to detect sub-millimetre defects with any orientation on the inner surface of pipes. Five different probes were designed, produced and experimentally validated. These probes include arrays of planar trapezoidal coils in a flexible substrate used alone or together with different winded drive coils. Numerical simulations with Finite Element Method were used to predict the probe response to defects with any orientation. Experimental results in austenitic steel jackets used in ITER revealed that the new probes have an improved reliability compared to conventional toroidal bobbin probes, allowing a higher sensitivity to circumferential defects.