Publications

Export 14 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Machado, MA, Rosado L, Pedrosa N, Miranda RM, Piedade M, Santos TG.  2017.  Customized Eddy Current Probes for Pipe Inspection. Studies in Applied Electromagnetics and Mechanics. :283-290.: IOS Press Ebooks Abstract

A novel Eddy Current (EC) probe configurations were developed to detect millimeter defects with any orientation on inner or outer pipe surfaces. The probes were designed and experimentally validated in different materials where the defects tested were identified with a high sensitivity and good signal-to-noise ratio.

Machado, MA, Antin K-N, Rosado LS, Vilaça P, Santos TG.  2021.  High-speed inspection of delamination defects in unidirectional CFRP by non-contact eddy current testing, nov. Composites Part B: Engineering. 224:109167. AbstractWebsite

n/a

Machado, MA, Rosado LFSG, Mendes NAM, Miranda RMM, dos Santos TJG.  2021.  New directions for inline inspection of automobile laser welds using non-destructive testing, sep. The International Journal of Advanced Manufacturing Technology. AbstractWebsite

An innovative pilot installation and eddy current testing (ECT) inspection system for laser-brazed joints is presented. The proposed system detects both surface and sub-surface welding defects operating autonomously and integrated with a robotized arm. Customized eddy current probes were designed and experimentally validated detecting pore defects with 0.13 mm diameter and sub-surface defects buried 1 mm deep. The integration of the system and the manufacturing process towards an Industry 4.0 quality control paradigm is also discussed.

Machado, MA, Rosado L, Pedrosa N, Vostner A, Miranda RM, Piedade M, Santos TG.  2017.  Novel eddy current probes for pipes: Application in austenitic round-in-square profiles of ITER. NDT&E International. 87:111-118. AbstractWebsite

Novel eddy current probes were developed to detect sub-millimetre defects with any orientation on the inner surface of pipes. Five different probes were designed, produced and experimentally validated. These probes include arrays of planar trapezoidal coils in a flexible substrate used alone or together with different winded drive coils. Numerical simulations with Finite Element Method were used to predict the probe response to defects with any orientation. Experimental results in austenitic steel jackets used in ITER revealed that the new probes have an improved reliability compared to conventional toroidal bobbin probes, allowing a higher sensitivity to circumferential defects.

Machado, MA, Antin KN, Rosado LS, Vilaça P, Santos TG.  2019.  High speed inspection of UD CFRP composites. 58th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2019. , Telford, UK Abstract

Online monitoring of carbon fibre reinforced polymer (CFRP) components requires a Non-Destructive Testing (NDT) method capable of contactless sensing of damage, while enabling high inspection speeds needed for monitoring large components. Eddy current testing (ECT) of CFRP components has great potential for two reasons. First, ECT probes are capable of operating without contact, although minimizing the lift-off is preferred. Second, impedance analysers with high sample rates make high-speed inspection possible. This research assesses the damage detection capabilities of eddy current probes on CFRP samples with artificial and realistic damage. To support the aptitude of the ECT method for these needs, the CFRP material is characterized and numerical simulations are performed in order to develop optimized and tailored ECT probes for the detection of defects with different morphologies, namely fibre breakage and delaminations, and to take into consideration the highly anisotropic electrical bulk resistivity of the CFRP material. Different ECT probes were designed, produced and experimentally validated. The experiments were performed at a high inspection speed (4 m/s) and the high sensitivity of the probes was demonstrated.

Machado, MA, Silva MI, Martins AP, Carvalho MS, Santos TG.  2021.  Double active transient thermography, nov. NDT & E International. :102566. AbstractWebsite

n/a

Machado, MA, Antin K-N, Rosado LS, Vilaça P, Santos TG.  2019.  Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer. Composites Part B: Engineering. 168:226-235. AbstractWebsite

This paper presents the development and the results of a customized eddy current (EC) non-destructive testing (NDT) system for highly demanding online inspection conditions. Several planar eddy current array probes were designed, numerically simulated and experimentally compared for the inspection of low conductivity unidirectional carbon fibre reinforced polymer (CFRP) ropes. The inspections were performed using a dedicated scanner device at 4 m/s with 3 mm probe lift-off where defects under 1 mm were detected with an excellent SNR. Different defect morphologies and sizes, such as broken fibres and lateral cuts, were successful detected and compared to conventional probes.

Machado, MA, Inácio PL, Santos RA, Gomes AF, Martins AP, Carvalho MS, Santos TG.  2019.  Inspection of composite parts produced by additive manufacturing: Air-coupled ultrasound and thermography. 58th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2019. , Telford, UK Abstract

Polymeric parts produced by Fused Deposition Modelling (FDM) Additive Manufacturing (AM) has no special safety requirements, and therefore, NDT is not required. However, the use of AM to produce Fibre Reinforcement Thermoplastics (FRTP) parts means that structural applications with safety requirements are envisaged, demanding reliable NDT methods. This paper presents experimental results and numerical simulation by Finite Element Method (FEM) of the NDT inspection of different parts of polymeric and RFTP composite materials. The parts were produced by FDM Additive Manufacturing and different delamination defects were introduced at different positions and with different dimensions and morphologies. Two different NDT techniques were used, exploiting different inspection parameters: air-coupled ultrasound, using frequencies between 50 and 400 kHz and active transient thermography, in both reflection and transition modes. The influence of the curvature of the parts was analysed, from the experimental point of view, and the results were compared with different numerical simulation strategies. It was shown that, both NDT techniques can detect the defects, with good spatial resolution, being the thermography reflection mode the fastest and expedite for curvature parts. The numerical simulation corroborates the experimental results allowing a deeper insight on the physical phenomena involved.

Machado, MA, Rosado LS, Mendes NM, Miranda RM, Santos TG.  2021.  Multisensor Inspection of Laser-Brazed Joints in the Automotive Industry, nov. Sensors. 21:7335., Number 21 AbstractWebsite

Automobile laser brazing remains a complex process whose results are affected by several process variables that may result in nonacceptable welds. A multisensory customized inspection system is proposed, with two distinct non-destructive techniques: the potential drop method and eddy current testing. New probes were designed, simulated, produced, and experimentally validated in automobile's laser-brazed weld beads with artificially introduced defects. The numerical simulations allowed the development of a new four-point probe configuration in a non-conventional orthogonal shape demonstrating a superior performance in both simulation and experimental validation. The dedicated inspection system allowed the detection of porosities, cracks, and lack of bonding defects, demonstrating the redundancy and complementarity these two techniques provide.

Matos Filipe, L, Santos TG, Valtchev S, Pamies Teixeira J, Miranda RM.  2012.  New method employing the electrical impedance for monitoring mechanical damage evolution in glass-reinforced: Applications to riveted joints, 2012. Materials and Design. 42:25-31. AbstractWebsite
n/a
Miranda, RM, Santos TG, Gandra J, Lopes N, Silva RJC.  2013.  Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys, 2013. Journal of Materials Processing Technology. 213(9):1609-1615. AbstractWebsite
n/a
Miranda, RM, Gandra JP, Vilaca P, Quintino L, Santos TG.  2014.  Surface modification by solid state processing, 2014. Surface Modification by Solid State Processing. :1-183.: Elsevier Ltd. AbstractWebsite
n/a
Moreira, PMGP, Santos T, Tavares SMO, Richter-Trummer V, Vilaça P, de Castro PMST.  2008.  Mechanical characterization of friction stir welds of two dissimilar aluminium alloys of the 6xxx series, 2008. Advanced Materials Forum IV - Selected, peer reviewed papers from the 4th International Materials Symposium Materiais 2007 and 8th Encontro da Sociedade Portuguesa de Materiais - SPM. 587-588:430-434., Porto AbstractWebsite
n/a
Moreira, PMGP, Santos T, Tavares SMO, Richter-Trummer V, Vilaça P, de Castro PMST.  2009.  Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, 2009. Materials and Design. 30(1):180-187. AbstractWebsite
n/a