Publications

Export 59 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
A.Rocha, D. Sousa, I. Ferreira, and M. S. Diniz, "Biochemical responses in Danio rerio following exposure to CdS and ZnS Quantum Dots", Annals of Medicine, vol. 51, pp. 71-71, 2019.
B
Baptista, A. C., M. Brito, A. Marques, and I. Ferreira, "Electronic control of drug release from gauze or cellulose acetate fibres for dermal applications", Journal of Materials Chemistry B, vol. 9, pp. 3515-3522, 2021.
Baptista, A. C., I. Ropio, B. Romba, J. P. Nobre, C. Henriques, J. C. Silva, J. I. Martins, J. P. Borges, and I. Ferreira, "Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries", J Mater Chem A, vol. 6, issue 1, pp. 256-265, 2018. AbstractDOI

A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and the support of the electrodes. Polymer composites of polypyrrole (PPy) and polyaniline (PANI) with cellulose acetate (CA) electrospun matrix were produced by in situ chemical oxidation of pyrrole and aniline on the CA fibers. The structure (CA/PPy|CA|CA/PANI) generated a power density of 1.7 mW g−1 in the presence of simulated biological fluids, which is a new and significant contribution to the domain of medical batteries and fully organic devices for biomedical applications.

Baptista, A. C., A. M. Botas, A. P. C. Almeida, A. T. Nicolau, B. P. Falcão, M. J. Soares, J. P. Leitão, R. Martins, J. P. Borges, and I. Ferreira, "Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers", Opt. Mater., vol. 39, pp. 278-281, 2015. AbstractDOI

The influence of Ag nanoparticles (Ag NPs) on the luminescence of electrospun nonwoven mats made of polyvinylpyrrolidone (PVP) has been studied in this work. The PVP fibers incorporating 2.1–4.3 nm size Ag NPs show a significant photoluminescence (PL) band between 580 and 640 nm under 325 nm laser excitation. The down conversion luminescence emission is present even after several hours of laser excitation, which denotes the durability and stability of fibers to consecutive excitations. As so these one-dimensional photonic fibers made using cheap methods is of great importance for organic optoelectronic applications, fluorescent clothing or counterfeiting labels.

Bari, M., J. Loureiro, M. Pudas, K. Tappura, K. Jaakola, M. Ruoho, I. Tittonen, S. Volz, C. Pavan, K. Costabello, D. Bollen, M. Haslam, and I. Ferreira, "TransFlexTeg: Large area transparent thin film thermoelectric devices for smart window and flexible applications", 14th European Conference on Thermoelectrics, ECT 2016, 20-23 Sep, 2016. Abstract

The main objective of TransFlexTeg is to develop an innovative large area distributed sensor network integrating transparent thin film thermoelectric devices and sensors for multifunctional smart windows and flexible high impact volume applications. Different breakthrough concepts will be developed: 1) large area high performance transparent thermoelectric thin films deposited on flexible substrates for thermal energy harvesting; 2) low cost high throughput thin film thermal sensors for thermal mapping and gesture sensing; 3) flexible smart windows and walls with energy harvesting, environmental sensing and wireless communication functionalities. This technology aims to demonstrate the functionalities of a smart window able to measure air quality and environmental parameters such as temperature, sun radiation and humidity. The data is automatically collected and can be utilized for controlling heating, cooling and ventilation systems of indoors. Active radio interface enables long range communication and long term data collection with WiFi or a similar base station. The proposed concept of smart windows replaces several conventional sensors with a distributed sensor network that is integrated invisibly into windows. In addition to the power generated from the thermal energy harvesting, the thermoelectric elements (TE) are also used as temperature sensors that, while being distributed over large area, enable thermal mapping of the area instead of just one or a few values measured from particular points. This smart window can be produced on glass. The active layer itself can be flexible glass layer or polymer sheet, which will significantly broaden the field of applications and improve business opportunities. Both can be manufactured in batch, or in Roll to Roll Atomic Layer Deposition (R2R ALD) process. High environmental impact is expected with savings of more than 25% of the electrical usage of residential homes and office buildings.

Bianchi, C., A. C. Marques, R. C. da Silva, T. Calmeiro, and I. Ferreira, "Near infrared photothermoelectric effect in transparent AZO/ITO/Ag/ITO thin films", Scientific reports, vol. 11, pp. 1-11, 2021.
Bianchi, C., L. M. Ferreira, J. Loureiro, A. Rodrigues, P. Duarte, A. C. Baptista, and I. M. Ferreira, "Vanadium Pentoxide Alloyed with Graphite for Thin-Film Thermal Sensors", J. Electron. Mater., vol. 45, issue 3, pp. 1987–1991, 2016. AbstractDOI

The thermoelectric (TE) properties of vanadium pentoxide (V2O5) alloyed with graphite (G) were studied as a function of its incorporation percentage. Variable weight percentages of graphite powder (0–50%) were added to V2O5 powder and their mixtures were evaporated by a thermal evaporation technique to form thin films with a thickness in the range of 30–80 nm. In the infrared wavelength region, the transmittance of the obtained films increased as the G percentage was increased, while in the visible range, it decreased with G up to 10%. The TE properties were improved when G was in the range of 10–30%, while it decreased for the other percentages: Seebeck coefficient (S) changed from 0.6 mV/K to 0.9 mV/K and was zero with a G of 50%; the electrical conductivity varied slightly from 5 (Ωm)−1 to 0.7 (Ωm)−1 while the mobility improved from 0.07 cm2/V s to 1.5 cm2/V s and the respective carrier concentration was reduced, from 1 × 1018 cm−3 to 4 × 1016 cm−3. These films were applied as temperature sensors evaluating the thermovoltage as a function of thermal gradient between two electrodes, in which one was maintained at room temperature.

Bianchi, C., J. Loureiro, P. Duarte, J. Marques, J. Figueira, I. Ropio, and I. Ferreira, "V2O5 Thin Films for Flexible and High Sensitivity Transparent Temperature Sensor", Advanced Materials Technologies, vol. 1, issue 6, pp. 1600077, 2016. AbstractDOI

This work reports the optimization of V2O5 Seebeck coefficient to obtain high sensitivity and transparent temperature sensors. It is observed that the film thickness plays a major role on the thermoelectric properties, together with the annealing step, obtaining a Seebeck coefficient of −690 μV K−1, for 75 nm thick V2O5 films deposited on glass, after an annealing step of 1 h at 773 K, in air. The V2O5 films are also deposited and optimized on polyimide substrates, but lower annealing temperature is required, 573 K for 3 h, to maintain the flexibility of the substrate and simultaneously high Seebeck coefficient, −591 μV K−1. These films are used in a simple design sensor and tested on the surface of a microfluidic channel (500 μm) made of polydimethylsiloxane, while having hot water flowing through it. The response time is below 1 s and the recovery time around 5 s.

C
Castro, D., P. Jaeger, A. C. Baptista, and J. P. Oliveira, "An Overview of High-Entropy Alloys as Biomaterials", Metals, vol. 11, pp. 648, 2021.
Contreras, J., R. Martins, P. Wojcik, S. Filonovich, H. Águas, L. Gomes, E. Fortunato, and I. Ferreira, "Color sensing ability of an amorphous silicon position sensitive detector array system", Sensor Actuat. A-Phys., vol. 205, pp. 26-37, 2014. AbstractDOI

The color sensing ability of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) was analyzed. Besides being used to reproduce a 3D profile of highly reflective surfaces, here we show that it can also differentiate primary red, green, blue (RGB) and derived colors. This was realized by using an incident beam with a RGB color combination and adequate integration times taking into account that a color surface mostly reflects its corresponding color. A mean colorimetric error of 25.7 was obtained. Overall, we show that color detection is possible via the use of this sensor array system, composed by a simpler amorphous silicon pin junction.