M. T. Viciosa¹
M. Dionísio¹
J. F. Mano^{2,3}
¹ REQUIMTE/CQFB,
Departamento de Química,
FCT, Universidade Nova de
Lisboa, 2829-516 Caparica,
Portugal

Dielectric Characterization of Neutralized and Nonneutralized Chitosan upon Drying

² Department of Polymer Engineering, University of Minho, Campus de Azurém 4800-058 Guimarães, Portugal

³ 3B's Research Group, Biomaterials, Biodegradables, Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar 4710-053 Braga, Portugal

> Received 4 May 2005; revised 22 July 2005; accepted 28 August 2005

Published online 26 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bip.20378

Abstract: Isothermal dielectric loss spectra of neutralized and nonneutralized chitosan were acquired in successive runs from -130° C up to increasing final temperatures, in a frequency range between 20 Hz and 1 MHz. Essentially, three relaxation processes were detected in the temperature range covered: (i) a β -wet process, detected when the sample has a higher water content that vanishes after heating to 150° C; (ii) a β process, which is located at temperatures below 0° C, becoming better defined and maintaining its location after annealing at 150° C independently of the protonation state of the amino side group; and (iii) a σ process that deviates to higher temperatures with drying, being more mobile in the nonneutralized form. Moreover, in dried neutralized chitosan, a fourth process was detected in the low frequency side of the secondary β process that diminishes after annealing. Whether this process is a distinct relaxation of the dried polymer or a deviated β -wet process due to the loss of water residues achieved by annealing is not straightforward. Only β and σ processes persist after annealing at 150° C. The changes in molecular mobility upon drying of these two relaxation processes were evaluated. © 2005 Wiley Periodicals, Inc. Biopolymers 81: 149–159, 2006

This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com

Keywords: chitosan; dielectric relaxation; molecular dynamics (MD); water effects

