Export 112 results:
Sort by: Author Title Type [ Year  (Asc)]
Santos, R, Romão MJ, Roque ACA, Carvalho AL.  2021.  Magnetic particles used in a new approach for designed protein crystallization. CrystEngComm. 23(5):1083-1090.
Frazão, J, Palma SICJ, Costa HMA, Alves C, Roque ACA, Silveira M.  2021.  Optical Gas Sensing with Liquid Crystal Droplets and Convolutional Neural Networks. Sensors. 21(8):2854.PDF
Matos, MJB, Trovão F, Gonçalves J, Rothbauer U, Freire MG, Barbosa AMJB, Pina AS, Roque ACA.  2021.  A purification platform for antibodies and derived fragments using a de novo designed affinity adsorbent. Separation and Purification Technology. 265
Ramou, E, Rebordao G, Palma SICJ, Roque ACA.  2021.  Stable and Oriented Liquid Crystal Droplets Stabilized by Imidazolium Ionic Liquids. MOLECULES. 26(19):6044.PDF
Gonçalves, WB, Cervantes EP, Pádua ACCS, Santos G, Palma SICJ, Li RWC, Roque ACA, Gruber J.  2021.  Ionogels Based on a Single Ionic Liquid for Electronic Nose Application, jul. Chemosensors. 9(201), Number 8: Multidisciplinary Digital Publishing Institute AbstractPDFWebsite

Ionogel are versatile materials, as they present the electrical properties of ionic liquids and also dimensional stability, since they are trapped in a solid matrix, allowing application in electronic devices such as gas sensors and electronic noses. In this work, ionogels were designed to act as a sensitive layer for the detection of volatiles in a custom-made electronic nose. Ionogels composed of gelatin and a single imidazolium ionic liquid were doped with bare and functionalized iron oxide nanoparticles, producing ionogels with adjustable target selectivity. After exposing an array of four ionogels to 12 distinct volatile organic compounds, the collected signals were analyzed by principal component analysis (PCA) and by several supervised classification methods, in order to assess the ability of the electronic nose to distinguish different volatiles, which showed accuracy above 98%.

Ramou, E, Palma SICJ, Roque ACA.  2022.  Nanoscale Events on Cyanobiphenyl-Based Self-Assembled Droplets Triggered by Gas Analytes. ACS Applied Materials and Interfaces. 14(4):6261-6273.PDF
Esteves, C, Palma SICJ, Costa HMA, Alves C, Santos GMC, Ramou E, Carvalho AL, Alves V, Roque ACA.  2022.  Tackling Humidity with Designer Ionic Liquid-Based Gas Sensing Soft Materials, dec. Advanced Materials. 34:2107205., Number 8: John Wiley & Sons, Ltd AbstractPDFWebsite

Relative humidity is simultaneously a sensing target and a contaminant in gas and volatile organic compound (VOC) sensing systems, where strategies to control humidity interference are required. An unmet challenge is the creation of gas-sensitive materials where the response to humidity is controlled by the material itself. Here, humidity effects are controlled through the design of gelatin formulations in ionic liquids without and with liquid crystals as electrical and optical sensors, respectively. In this design, the anions [DCA]− and [Cl]− of room temperature ionic liquids from the 1-butyl-3-methylimidazolium family tailor the response to humidity and, subsequently, sensing of VOCs in dry and humid conditions. Due to the combined effect of the materials formulations and sensing mechanisms, changing the anion from [DCA]− to the much more hygroscopic [Cl]−, leads to stronger electrical responses and much weaker optical responses to humidity. Thus, either humidity sensors or humidity-tolerant VOC sensors that do not require sample preconditioning or signal processing to correct humidity impact are obtained. With the wide spread of 3D- and 4D-printing and intelligent devices, the monitoring and tuning of humidity in sustainable biobased materials offers excellent opportunities in e-nose sensing arrays and wearable devices compatible with operation at room conditions.

Alves, R, Rodrigues J, Ramou E, Palma S, Roque A, Gamboa H.  2022.  Classification of Volatile Compounds with Morphological Analysis of e-nose Response, Feb. Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNALS. :31–39.: Scitepress AbstractPDF

Electronic noses (e-noses) mimic human olfaction, by identifying Volatile Organic Compounds (VOCs). This
work presents a novel approach that successfully classifies 11 known VOCs using the signals generated by
sensing gels in an in-house developed e-nose. The proposed signals’ analysis methodology is based on the
generated signals’ morphology for each VOC since different sensing gels produce signals with different shapes
when exposed to the same VOC. For this study, two different gel formulations were considered, and an average
f1-score of 84% and 71% was obtained, respectively. Moreover, a standard method in time series classification
was used to compare the performances. Even though this comparison reveals that the morphological approach
is not as good as the 1-nearest neighbour with euclidean distance, it shows the possibility of using descriptive
sentences with text mining techniques to perform VOC classification.

Oliveira, A, Ramou E, Teixeira G, Palma S, Roque A.  2022.  Incorporation of VOC-Selective Peptides in Gas Sensing Materials, feb. Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies. :25–34. AbstractPDFWebsite

Enhancing the selectivity of gas sensing materials towards specific volatile organic compounds (VOCs) is
challenging due to the chemical simplicity of VOCs as well as the difficulty in interfacing VOC selective
biological elements with electronic components used in the transduction process. We aimed to tune the
selectivity of gas sensing materials through the incorporation of VOC-selective peptides into gel-like gas
sensing materials. Specifically, a peptide (P1) known to discriminate single carbon deviations among benzene
and derivatives, along with two modified versions (P2 and P3), were integrated with gel compositions
containing gelatin, ionic liquid and without or with a liquid crystal component (ionogels and hybrid gels
respectively). These formulations change their electrical or optical properties upon VOC exposure, and were
tested as sensors in an in-house developed e-nose. Their ability to distinct and identify VOCs was evaluated
via a supervised machine learning classifier. Enhanced discrimination of benzene and hexane was detected
for the P1-based hybrid gel. Additionally, complementarity of the electrical and optical sensors was observed
considering that a combination of both their accuracy predictions yielded the best classification results for the
tested VOCs. This indicates that a combinatorial array in a dual-mode e-nose could provide optimal
performance and enhanced selectivity.

Moreira, IP, Esteves C, Palma SICJ, Ramou E, Carvalho ALM, Roque ACA.  2022.  Synergy between silk fibroin and ionic liquids for active gas-sensing materials, jun. Materials Today Bio. 15:100290.: Elsevier AbstractPDFWebsite

Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2–10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.

Palma, SICJ, Frazao J, Alves R, Costa HMA, Alves C, Gamboa H, Silveira M, Roque ACA.  2022.  Learning to see VOCs with Liquid Crystal Droplets, may. 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). :1–4.: IEEE AbstractPDFWebsite

In hybrid gels with immobilized liquid crystal
(LC) droplets, fast and unique optical texture variations are
generated when distinct volatile organic compounds (VOCs)
interact with the LC and disturb its molecular order. The
optical texture variations can be observed under a polarized
optical microscope or transduced into a signal representing the
variations of light transmitted through the LC. We show how
hybrid gels can accurately identify 11 distinct VOCs by using
deep learning to analyze optical texture variations of individual
droplets (0.93 average F1-score) and by using machine learning
to analyze 1D optical signals from multiple droplets in hybrid
gels (0.88 average F1-score)

Esteves, C, Palma S, Costa H, Alves C, Santos G, Ramou E, Roque AC.  2022.  VOC Sensing in Humid and Dry Environments, may. 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). :1–3.: IEEE AbstractPDFWebsite

We report the development of gas-sensing multicomponent hybrid materials to be used under humidified and dried environments without the need of sample preconditioning or heavy signal processing. The easy tunability and the unique characteristics presented by the multicomponent hybrid materials suggests their use in nearterm applications in electronic nose systems able to operate in dry or humidified environments.