Publications

Export 11 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
B
Barroso, T, Branco RJF, Aguiar‐Ricardo A, Roque ACA.  2014.  Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification. Journal of Computer-Aided Molecular Design. 28(1):25-34. AbstractWebsite

Affinity chromatography is one of the most common techniques employed at the industrial-scale for antibody purification. In particular, the purification of human immunoglobulin G (hIgG) has gained relevance with the immobilization of its natural binding counterpart—Staphylococcus aureus Protein A (SpA) or with the recent development of biomimetic affinity ligands, namely triazine-based ligands. These ligands have been developed in order to overcome economic and leaching issues associated to SpA. The most recent triazine-based ligand—TPN-BM, came up as an analogue of 2-(3-amino-phenol)-6-(4-amino-1-naphthol)-4-chloro-sym-triazine ligand also known as ligand 22/8 with improved physico-chemical properties and a greener synthetic route. This work intends to evaluate the potential of TPN-BM as an alternative affinity ligand towards antibody recognition and binding, namely IgG, at an atomic level, since it has already been tested, after immobilization onto chitosan-based monoliths and demonstrated interesting affinity behaviour for this purpose. Herein, combining automated molecular docking and molecular dynamics simulations it was predicted that TPN-BM has high propensity to bind IgG through the same binding site found in the crystallographic structure of SpA_IgG complex, as well as theoretically predicted for ligand 22/8_IgG complex. Furthermore, it was found that TPN-BM established preferential interactions with aromatic residues at the Fab domain (Trp 50, Tyr 53, Tyr 98 and Trp 100), while in the Fc domain the main interactions are based on hydrogen bonds with pH sensitive residues at operational regime for binding and elution like histidines (His 460, His 464, His 466). Moreover, the pH dependence of TPN-BM_IgG complex formation was more evident for the Fc domain, where at pH 3 the protonation state and consequently the charge alteration of histidine residues located at the IgG binding site induced ligand detachment which explains the optimal elution condition at this pH observed experimentally.

Borlido, L, Moura L, Azevedo AM, Roque ACA, Aires‐Barros MR, Farinha JPS.  2013.  Stimuli‐Responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnology Journal. 8(6):709–717. AbstractWebsite

Monoclonal antibodies (mAbs) are important therapeutic proteins. One of the challenges facing large-scale production of monoclonal antibodies is the capacity bottleneck in downstream processing, which can be circumvented by using magnetic stimuli-responsive polymer nanoparticles. In this work, stimuli-responsive magnetic particles composed of a magnetic poly(methyl methacrylate) core with a poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) shell cross-linked with N, N'-methylenebisacrylamide were prepared by miniemulsion polymerization. The particles were shown to have an average hydrodynamic diameter of 317 nm at 18°C, which decreased to 277 nm at 41°C due to the collapse of the thermo-responsive shell. The particles were superparamagnetic in behavior and exhibited a saturation magnetization of 12.6 emu/g. Subsequently, we evaluated the potential of these negatively charged stimuli-responsive magnetic particles in the purification of a monoclonal antibody from a diafiltered CHO cell culture supernatant by cation exchange. The adsorption of antibodies onto P(NIPAM-co-AA)-coated nanoparticles was highly selective and allowed for the recovery of approximately 94% of the mAb. Different elution strategies were employed providing highly pure mAb fractions with host cell protein (HCP) removal greater than 98%. By exploring the stimuli-responsive properties of the particles, shorter magnetic separation times were possible without significant differences in product yield and purity.

E
Esteves, C, Ramou E, Porteira ARP, Barbosa AJM, Roque ACA.  2020.  Seeing the Unseen: The Role of Liquid Crystals in Gas‐Sensing Technologies. Advanced Optical Materials. 1902117:1-29. AbstractPDF

Fast, real-time detection of gases and volatile organic compounds (VOCs) is
an emerging research field relevant to most aspects of modern society, from
households to health facilities, industrial units, and military environments.
Sensor features such as high sensitivity, selectivity, fast response, and low
energy consumption are essential. Liquid crystal (LC)-based sensors fulfill
these requirements due to their chemical diversity, inherent self-assembly
potential, and reversible molecular order, resulting in tunable stimuliresponsive soft materials. Sensing platforms utilizing thermotropic uniaxial
systems—nematic and smectic—that exploit not only interfacial phenomena,
but also changes in the LC bulk, are demonstrated. Special focus is given to
the different interaction mechanisms and tuned selectivity toward gas and
VOC analytes. Furthermore, the different experimental methods used to
transduce the presence of chemical analytes into macroscopic signals are discussed and detailed examples are provided. Future perspectives and trends
in the field, in particular the opportunities for LC-based advanced materials in
artificial olfaction, are also discussed.

F
Fernandes, CSM, Castro R, Coroadinha AS, Roque ACA.  2016.  Small synthetic ligands for the enrichment of viral particles pseudotyped with amphotropic murine leukemia virus envelope. Journal of Chromatography A. 1438:160–170.: Elsevier B.V. AbstractWebsite

Retroviral vectors gained popularity toward other viral vectors as they integrate their genome into hosts' genome, a characteristic required for the modification of stem cells. However, the production of viable particles for gene therapy is hampered by the low ratio of infectious to non-infectious viral particles after purification, low titers and limited number of competent viral receptors. We have developed de novo two fully synthetic triazine-based ligands that can selectively bind retroviral particles pseudotyped with amphotropic murine leukemia virus envelope (AMPHO4070A). A 78-membered library of triazine-based ligands was designed in silico and was virtually screened against the modeled structure of the AMPHO4070A protein. Ligands displaying the highest energy of binding were synthesized on cross-linked agarose and experimentally tested. Adsorbents containing ligands A5A10 and A10A11 showed selectivity toward viral particles containing the target protein (VLP-AMPHO), binding 19 ± 5 $μ$g/g support and 47 ± 13 $μ$g/g support, respectively. The elution conditions for both ligands were mild and with high recovery yields (80-100{%}), in comparison with common purification practices. These results were based on a lab-scale experimental setting with VLP integrity being confirmed through TEM. In particular, the elution buffer containing 12 mM imidazole allowed the recovery of intact amphotropic viral particles.

Ferreira, IMPLV, Pinho O, Monteiro D, Faria S, Cruz S, Perreira A, Roque ACA, Tavares P.  2010.  Short communication: effect of kefir grains on proteolysis of major milk proteins. Journal of Dairy Science. 93:27–31., Number 1 AbstractWebsite

The effect of kefir grains on the proteolysis of major milk proteins in milk kefir and in a culture of kefir grains in pasteurized cheese whey was followed by reverse {phase-HPLC} analysis. The reduction of kappa-, alpha-, and beta-caseins {(CN)}, alpha-lactalbumin {(alpha-LA)}, and beta-lactoglobulin {(beta-LG)} contents during 48 and 90 h of incubation of pasteurized milk {(100mL)} and respective cheese whey with kefir grains (6 and 12 g) at 20 degrees C was monitored. Significant proteolysis of {alpha-LA} and kappa-, alpha-, and beta-caseins was observed. The effect of kefir amount (6 and 12 {g/100mL)} was significant for {alpha-LA} and alpha- and {beta-CN.} {alpha-Lactalbumin} and {beta-CN} were more easily hydrolyzed than {alpha-CN.} No significant reduction was observed with respect to {beta-LG} concentration for 6 and 12 g of kefir in {100mL} of milk over 48 h, indicating that no significant proteolysis was carried out. Similar results were observed when the experiment was conducted over 90 h. Regarding the cheese whey kefir samples, similar behavior was observed for the proteolysis of {alpha-LA} and {beta-LG:} {alpha-LA} was hydrolyzed between 60 and 90% after 12h (for 6 and 12 g of kefir) and no significant {beta-LG} proteolysis occurred. The proteolytic activity of lactic acid bacteria and yeasts in kefir community was evaluated. Kefir milk prepared under normal conditions contained peptides from proteolysis of {alpha-LA} and kappa-, alpha-, and beta-caseins. Hydrolysis is dependent on the kefir:milk ratio and incubation time. {beta-Lactoglobulin} is not hydrolyzed even when higher hydrolysis time is used. Kefir grains are not appropriate as adjunct cultures to increase {beta-LG} digestibility in whey-based or whey-containing foods.

M
Moreira, IP, Esteves C, Palma SICJ, Ramou E, Carvalho ALM, Roque ACA.  2022.  Synergy between silk fibroin and ionic liquids for active gas-sensing materials, jun. Materials Today Bio. 15:100290.: Elsevier AbstractPDFWebsite

Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2–10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.

P
Pádua, AC, Osório D, Rodrigues J, Santos G, Porteira A, Palma S, Roque A, Gamboa H.  2018.  Scalable and Easy-to-use System Architecture for Electronic Noses. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies . :179-186., Madeira: BIODEVICES AbstractPDF

The purpose of this work was the development of a scalable and easy-to-use electronic noses (E-noses) system architecture for volatile organic compounds sensing, towards the final goal of using several E-noses acquiring large datasets at the same time. In order to accomplish this, each E-nose system is comprised by a delivery system, a detection system and a data acquisition and control system. In order to increase the scalability, the data is stored in a database common to all E-noses. Furthermore, the system was designed so it would only require five simple steps to setup a new E-nose if needed, since the only parameter that needs to be changed is the ID of the new E-nose. The user interacts with a node using an interface, allowing for the control and visualization of the experiment. At this stage, there are three different E-nose prototypes working with this architecture in a laboratory environment.

Pappas, CG, Wijerathne N, Sahoo JK, Jain A, Kroiss D, Sasselli IR, Pina AS, Lampel A, Ulijn RV.  2020.  Spontaneous Aminolytic Cyclization and Self-Assembly ofDipeptide Methyl Esters in Water. ChemSystemsChem. 2(e2000013):1-7.
Pina, AS, Roque ACA.  2009.  Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme, apr. Journal of Molecular Recognition. 22:162–168., Number 2 AbstractWebsite

High blood pressure or hypertension is a condition affecting many individuals and represents a controllable risk factor for cardiovascular diseases such as coronary heart disease and stroke. A non-pharmacological approach to manage these includes the application of food components with antihypertensive activity. Milk protein-derived peptides have been exploited as natural hypotensive agents, namely the peptides {Val-Pro-Pro} {(VPP)} and {Ile-Pro-Pro} {(IPP)}, already commercialized in functional foods as a potential alternative to synthetic drugs. These bioactive peptides inhibit in vitro and in vivo the Angiotensin I-converting enzyme {(ACE)}, a protein with an important role in blood pressure regulation. In this work, we attempted to elucidate the possible mode of interaction between the peptides and {ACE}, including mechanisms of binding to the cofactor Zn2+, and further contrast this with the known mode of inhibition exerted by synthetic drugs {(Captopril}, Enalaprilat and Lisinopril). The bioactive peptide {Ala-Leu-Pro-Met-His-Ile-Arg} {(ALPMHIR)}, also known to inhibit the enzyme {ACE} but with a lower efficiency than {VPP} and {IPP}, was utilized in the docking studies for comparison. It was observed that the best docking poses obtained for {VPP} and {IPP} were located at the {ACE} catalytic site with very high resemblance to the drugs mode of interaction, including the coordination with Zn2+. As for {ALPMHIR}, the best docking poses were located in the narrow {ACE} channel outside the catalytic site, representing higher affinity energies and fewer resemblances with the interaction established by drugs.

R
Ramou, E, Rebordao G, Palma SICJ, Roque ACA.  2021.  Stable and Oriented Liquid Crystal Droplets Stabilized by Imidazolium Ionic Liquids. MOLECULES. 26(19):6044.PDF
Rodrigues, R, Palma SICJ, Correia VJ, Padrao I, Pais J, Banza M, Alves C, Deuermeier J, Martins C, Costa HMA, Ramou E, Silva Pereira C, Roque ACA.  2020.  Sustainable plant polyesters as substrates for optical gas sensors. Materials Today Bio. 8:100083. AbstractPDF

The fast and non-invasive detection of odors and volatile organic compounds (VOCs) by gas sensors and electronic
noses is a growing field of interest, mostly due to a large scope of potential applications. Additional drivers for the
expansion of the field include the development of alternative and sustainable sensing materials. The discovery
that isolated cross-linked polymeric structures of suberin spontaneously self-assemble as a film inspired us to
develop new sensing composite materials consisting of suberin and a liquid crystal (LC). Due to their stimuliresponsive and optically active nature, liquid crystals are interesting probes in gas sensing. Herein, we report
the isolation and the chemical characterization of two suberin types (from cork and from potato peels) resorting to
analyses of gas chromatography–mass spectrometry (GC-MS), solution nuclear magnetic resonance (NMR), and Xray photoelectron spectroscopy (XPS). The collected data highlighted their compositional and structural differences. Cork suberin showed a higher proportion of longer aliphatic constituents and is more esterified than potato
suberin. Accordingly, when casted it formed films with larger surface irregularities and a higher C/O ratio. When
either type of suberin was combined with the liquid crystal 5CB, the ensuing hybrid materials showed distinctive
morphological and sensing properties towards a set of 12 VOCs (comprising heptane, hexane, chloroform,
toluene, dichlormethane, diethylether, ethyl acetate, acetonitrile, acetone, ethanol, methanol, and acetic acid).
The optical responses generated by the materials are reversible and reproducible, showing stability for 3 weeks.
The individual VOC-sensing responses of the two hybrid materials are discussed taking as basis the chemistry of
each suberin type. A support vector machines (SVM) algorithm based on the features of the optical responses was
implemented to assess the VOC identification ability of the materials, revealing that the two distinct suberin-based
sensors complement each other, since they selectively identify distinct VOCs or VOC groups. It is expected that
such new environmentally-friendly gas sensing materials derived from natural diversity can be combined in arrays
to enlarge selectivity and sensing capacity.