Publications

Export 528 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
1
The 1.4 angstrom resolution structure of Paracoccus pantotrophus pseudoazurin, Najmudin, Shabir, Pauleta Sofia R., Moura Isabel, and Romao Maria J. , Acta Crystallographica Section F-Structural Biology and Crystallization Communications, Jun, Volume 66, p.627-635, (2010) AbstractWebsite

Pseudoazurins are small type 1 copper proteins that are involved in the flow of electrons between various electron donors and acceptors in the bacterial periplasm, mostly under denitrifying conditions. The previously determined structure of Paracoccus pantotrophus pseudoazurin in the oxidized form was improved to a nominal resolution of 1.4 angstrom, with R and R(free) values of 0.188 and 0.206, respectively. This high-resolution structure makes it possible to analyze the interactions between the monomers and the solvent structure in detail. Analysis of the high-resolution structure revealed the structural regions that are responsible for monomer-monomer recognition during dimer formation and for protein-protein interaction and that are important for partner recognition. The pseudoazurin structure was compared with other structures of various type 1 copper proteins and these were grouped into families according to similarities in their secondary structure; this may be useful in the annotation of copper proteins in newly sequenced genomes and in the identification of novel copper proteins.

17O ENDOR detection of a solvent-derived Ni-(OH(x))-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas, Carepo, M., Tierney D. L., Brondino C. D., Yang T. C., Pamplona A., Telser J., Moura I., Moura J. J., and Hoffman B. M. , J Am Chem Soc, Jan 16, Volume 124, Number 2, p.281-6, (2002) AbstractWebsite

Crystallographic studies of the hydrogenases (Hases) from Desulfovibrio gigas (Dg) and Desulfovibrio vulgaris Miyazaki (DvM) have revealed heterodinuclear nickel-iron active centers in both enzymes. The structures, which represent the as-isolated (unready) Ni-A (S = (1)/(2)) enzyme state, disclose a nonprotein ligand (labeled as X) bridging the two metals. The bridging atom was suggested to be an oxygenic (O(2)(-) or OH(-)) species in Dg Hase and an inorganic sulfide in DvM Hase. To determine the nature and chemical characteristics of the Ni-X-Fe bridging ligand in Dg Hase, we have performed 35 GHz CW (17)O ENDOR measurements on the Ni-A form of the enzyme, exchanged into H(2)(17)O, on the active Ni-C (S = (1)/(2)) form prepared by H(2)-reduction of Ni-A in H(2)(17)O, and also on Ni-A formed by reoxidation of Ni-C in H(2)(17)O. In the native state of the protein (Ni-A), the bridging ligand does not exchange with the H(2)(17)O solvent. However, after a reduction/reoxidation cycle (Ni-A --> Ni-C --> Ni-A), an (17)O label is introduced at the active site, as seen by ENDOR. Detailed analysis of a 2-D field-frequency plot of ENDOR spectra taken across the EPR envelope of Ni-A((17)O) shows that the incorporated (17)O has a roughly axial hyperfine tensor, A((17)O) approximately [5, 7, 20] MHz, discloses its orientation relative to the g tensor, and also yields an estimate of the quadrupole tensor. The substantial isotropic component (a(iso)((17)O) approximately 11 MHz) of the hyperfine interaction indicates that a solvent-derived (17)O is indeed a ligand to Ni and thus that the bridging ligand X in the Ni-A state of Dg Hase is indeed an oxygenic (O(2)(-) or OH(-)) species; comparison with earlier EPR results by others indicates that the same holds for Ni-B. The small (57)Fe hyperfine coupling seen previously for Ni-A (A((57)Fe) approximately 0.9 MHz) is now shown to persist in Ni-C, A((57)Fe) approximately 0.8 MHz. However, the (17)O signal is lost upon reductive activation to the Ni-C state; reoxidation to Ni-A leads to the reappearance of the signal. Consideration of the electronic structure of the EPR-active states of the dinuclear center leads us to suggest that the oxygenic bridge in Ni-A(B) is lost in Ni-C and is re-formed from solvent upon reoxidation to Ni-A. This implies that the reductive activation to Ni-C opens Ni/Fe coordination sites which may play a central role in the enzyme's activity.

A
Actin as a potential target for decavanadate, Ramos, S., Moura J. J., and Aureliano M. , J Inorg Biochem, Dec, Volume 104, Number 12, p.1234-9, (2011) AbstractWebsite

ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1x10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4+/-25.7 muM and 112.3+/-8.7 muM was obtained in absence or presence of 20 muM V(10), respectively. Moreover, concentrations as low as 50 muM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 muM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase, Ghosh, S., Gorelsky S. I., Chen P., Cabrito I., Moura J. J., Moura I., and Solomon E. I. , J Am Chem Soc, Dec 24, Volume 125, Number 51, p.15708-9, (2003) AbstractWebsite

The tetranuclear CuZ cluster catalyzes the two-electron reduction of N2O to N2 and H2O in the enzyme nitrous oxide reductase. This study shows that the fully reduced 4CuI form of the cluster correlates with the catalytic activity of the enzyme. This is the first demonstration that the S = 1/2 form of CuZ can be further reduced. Complementary DFT calculations support the experimental findings and demonstrate that N2O binding in a bent mu-1,3-bridging mode to the 4CuI form is most efficient due to strong back-bonding from two reduced copper atoms. This back-donation activates N2O for electrophilic attack by a proton.

The active centers of adenylylsulfate reductase from Desulfovibrio gigas. Characterization and spectroscopic studies, Lampreia, J., Moura I., Teixeira M., Peck, H. D. Jr., Legall J., Huynh B. H., and Moura J. J. , Eur J Biochem, Mar 30, Volume 188, Number 3, p.653-64, (1990) AbstractWebsite

In order to utilize sulfate as the terminal electron acceptor, sulfate-reducing bacteria are equipped with a complex enzymatic system in which adenylylsulfate (AdoPSO4) reductase plays one of the major roles, reducing AdoPSO4 (the activated form of sulfate) to sulfite, with release of AMP. The enzyme has been purified to homogeneity from the anaerobic sulfate reducer Desulfovibrio gigas. The protein is composed of two non-identical subunits (70 kDa and 23 kDa) and is isolated in a multimeric form (approximately 400 kDa). It is an iron-sulfur, flavin-containing protein, with one FAD moiety, eight iron atoms and a minimum molecular mass of 93 kDa. Low-temperature EPR studies were performed to characterize its redox centers. In the native state, the enzyme showed an almost isotropic signal centered at g = 2.02 and only detectable below 20 K. This signal represented a minor species (0.10-0.25 spins/mol) and showed line broadening in the enzyme isolated from 57Fe-grown cells. Addition of sulfite had a minor effect on the EPR spectrum, but caused a major decrease in the visible region of the optical spectrum (around 392 nm). Further addition of AMP induced only a minor change in the visible spectrum whereas major changes were seen in the EPR spectrum; the appearance of a rhombic signal at g values 2.096, 1.940 and 1.890 (reduced Fe-S center I) observable below 30 K and a concomitant decrease in intensity of the g = 2.02 signal were detected. Effects of chemical reductants (ascorbate, H2/hydrogenase-reduced methyl viologen and dithionite) were also studied. A short time reduction with dithionite (15 s) or reduction with methyl viologen gave rise to the full reduction of center I (with slightly modified g values at 2.079, 1.939 and 1.897), and the complete disappearance of the g = 2.02 signal. Further reduction with dithionite produces a very complex EPR spectrum of a spin-spin-coupled nature (observable below 20 K), indicating the presence of at least two iron-sulfur centers, (centers I and II). Mossbauer studies on 57Fe-enriched D. gigas AdoPSO4 reductase demonstrated unambiguously the presence of two 4Fe clusters. Center II has a redox potential less than or equal to 400 mV and exhibits spectroscopic properties that are characteristic of a ferredoxin-type [4Fe-4S] cluster. Center I exhibits spectra with atypical Mossbauer parameters in its reduced state and has a midpoint potential around 0 mV, which is distinct from that of a ferredoxin-type [4Fe-4S] cluster, suggesting a different structure and/or a distinct cluster-ligand environment.

The affinity and specificity of Ca(2+)-binding sites of cytochrome-c peroxidase from Paracoccus denitrificans, Gilmour, R., Prazeres S., McGinnity D. F., Goodhew C. F., Moura J. J., Moura I., and Pettigrew G. W. , Eur J Biochem, Dec 15, Volume 234, Number 3, p.878-86, (1995) AbstractWebsite

The binding of Ca2+ to the dihaem cytochrome-c peroxidase from Paracoccus denitrificans was analysed by following perturbations in the visible and 1H-NMR spectra of both haem groups. The enzyme contains at least two types of Ca(2+)-binding site. Site I is occupied in the isolated enzyme, binds Ca2+ with a redox-state-independent Kd of 1.2 microM and accommodates neither Mg2+ nor Mn2+. Site II is unoccupied in dilute solutions of the isolated oxidised enzyme and binds Ca2+ cooperatively with a Kd of 0.52 mM. In the mixed valence form, the binding affinity increases to resemble that of site I. The cooperativity was shown by -Ca2+ binding to site II, the titration of haem methyl 1H-NMR resonances, and a half-of-sites effect observed for modification of an essential histidine with diethylpyrocarbonate. These are all consistent with site II being situated at the interface between two monomers of a dimeric enzyme. Thus the equilibrium of binding to site II is a reflection of the equilibrium for dimerisation and conditions which shift that equilibrium towards the dimer, such as increased ionic strength or high protein concentration, also increase Ca2+ affinity. Binding of Ca2+ to site II is required for formation of the active high spin state at the peroxidatic haem.

Aldehyde oxidoreductase activity in Desulfovibrio alaskensis NCIMB 13491 EPR assignment of the proximal [2Fe-2S] cluster to the Mo site, Andrade, S. L., Brondino C. D., Feio M. J., Moura I., and Moura J. J. , Eur J Biochem, Apr, Volume 267, Number 7, p.2054-61, (2000) AbstractWebsite

A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensis AOR is closely related to other AORs isolated from the Desulfovibrio genus. The protein is a 97-kDa homodimer, with 0.6 +/- 0.1 Mo, 3.6 +/- 0.1 Fe and 0.9 +/- 0.1 pterin cytosine dinucleotides per monomer. The enzyme catalyses the oxidation of aldehydes to their carboxylic acid form, following simple Michaelis-Menten kinetics, with the following parameters (for benzaldehyde): K(app/m)= 6.65 microM; V app = 13.12 microM.min(-1); k(app/cat) = 0.96 s(-1). Three different EPR signals were recorded upon long reduction of the protein with excess dithionite: an almost axial signal split by hyperfine interaction with one proton associated with Mo(V) species and two rhombic signals with EPR parameters and relaxation behavior typical of [2Fe-2S] clusters termed Fe/S I and Fe/S II, respectively. EPR results reveal the existence of magnetic interactions between Mo(V) and one of the Fe/S clusters, as well as between the two Fe/S clusters. Redox titration monitored by EPR yielded midpoint redox potentials of -275 and -325 mV for the Fe/S I and Fe/S II, respectively. The redox potential gap between the two clusters is large enough to obtain differentiated populations of these paramagnetic centers. This fact, together with the observed interactions among paramagnetic centers, was used to assign the EPR-distinguishable Fe/S I and Fe/S II to those seen in the reported crystal structures of homologous enzymes.

Aldehyde oxidoreductase activity in Desulfovibrio gigas: in vitro reconstitution of an electron-transfer chain from aldehydes to the production of molecular hydrogen, Barata, B. A., Legall J., and Moura J. J. , Biochemistry, Nov 2, Volume 32, Number 43, p.11559-68, (1993) AbstractWebsite

The molybdenum [iron-sulfur] protein, first isolated from Desulfovibrio gigas by Moura et al. [Moura, J. J. G., Xavier, A. V., Bruschi, M., Le Gall, J., Hall, D. O., & Cammack, R. (1976) Biochem. Biophys. Res. Commun. 72, 782-789], was later shown to mediate the electronic flow from salicylaldehyde to a suitable electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) [Turner, N., Barata, B., Bray, R. C., Deistung, J., LeGall, J., & Moura, J. J. G. (1987) Biochem. J. 243, 755-761]. The DCPIP-dependent aldehyde oxidoreductase activity was studied in detail using a wide range of aldehydes and analogues. Steady-state kinetic analysis (KM and Vmax) was performed for acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde in excess DCPIP concentration, and a simple Michaelis-Menten model was shown to be applicable as a first kinetic approach. Xanthine, purine, allopurinol, and N1-methylnicotinamide (NMN) could not be utilized as enzyme substrates. DCPIP and ferricyanide were shown to be capable of cycling the electronic flow, whereas other cation and anion dyes [O2 and NAD(P)+] were not active in this process. The enzyme showed an optimal pH activity profile around 7.8. This molybdenum hydroxylase was shown to be part of an electron-transfer chain comprising four different soluble proteins from D. gigas, with a total of 11 discrete redox centers, which is capable of linking the oxidation of aldehydes to the reduction of protons.

Aldehyde oxidoreductases and other molybdenum containing enzymes, Moura, J. J., and Barata B. A. , Methods Enzymol, Volume 243, p.24-42, (1994) AbstractWebsite
n/a
Amino acid sequence of a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800), Hausinger, R. P., Moura I., Moura J. J., Xavier A. V., Santos M. H., Legall J., and Howard J. B. , J Biol Chem, Dec 10, Volume 257, Number 23, p.14192-7, (1982) AbstractWebsite

The complete amino acid sequence for a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800) was determined by repetitive Edman degradation on the whole protein and peptides derived from trypsin, thermolysin, and Staphylococcus aureus protease digestion. The protein has 59 residues of which 8 are cysteines. The latter have the same spacing and distribution as found for the clostridial-type 2 x 4Fe:4S ferredoxins. Also, the sequence had evidence of internal homology which is indicative of gene duplication prior to the divergence of the archaebacteria and the eubacteria. This is the first sequence to be reported for a methanogen ferredoxin and only the fourth for a 3Fe:3S ferredoxin from any source.

The amino acid sequence of desulforedoxin, a new type of non heme iron protein from Desulfovibrio gigas, Bruschi, M., Moura I., Legall J., Xavier A. V., and Sieker L. C. , Biochemical and Biophysical Research Communications, Volume 90, Number 2, p.596-605, (1979) AbstractWebsite
n/a
Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate, Rodrigues, C. M., Sola S., Brito M. A., Brondino C. D., Brites D., and Moura J. J. , Biochem Biophys Res Commun, Feb 23, Volume 281, Number 2, p.468-74, (2001) AbstractWebsite

Mitochondria have been implicated in the cytotoxicity of amyloid beta-peptide (A beta), which accumulates as senile plaques in the brain of Alzheimer's disease patients. Tauroursodeoxycholate (TUDC) modulates cell death, in part, by preventing mitochondrial membrane perturbation. Using electron paramagnetic resonance spectroscopy analysis of isolated mitochondria, we tested the hypothesis that A beta acts locally in mitochondrial membranes to induce oxidative injury, leading to increased membrane permeability and subsequent release of caspase-activating factors. Further, we intended to determine the role of TUDC at preventing A beta-induced mitochondrial membrane dysfunction. The results demonstrate oxidative injury of mitochondrial membranes during exposure to A beta and reveal profound structural changes, including modified membrane lipid polarity and disrupted protein mobility. Cytochrome c is released from the intermembrane space of mitochondria as a consequence of increased membrane permeability. TUDC, but not cyclosporine A, almost completely abrogated A beta-induced perturbation of mitochondrial membrane structure. We conclude that A beta directly induces cytochrome c release from mitochondria through a mechanism that is accompanied by profound effects on mitochondrial membrane redox status, lipid polarity, and protein order. TUDC can directly suppress A beta-induced disruption of the mitochondrial membrane structure, suggesting a neuroprotective role for this bile salt.

The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by sigma(54) and a Cognate Transcriptional Regulator, Fievet, Anouchka, My Laetitia, Cascales Eric, Ansaldi Mireille, Pauleta Sofia R., Moura Isabel, Dermoun Zorah, Bernard Christophe S., Dolla Alain, and Aubert Corinne , Journal of Bacteriology, Jul, Volume 193, Number 13, p.3207-3219, (2011) AbstractWebsite

Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the sigma(54)-RNA polymerase. We further demonstrate that the sigma(54)-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with sigma(54)-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the sigma(70)-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed.

Analysis of the activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase through an electron transfer chain, Paes de Sousa, P. M., Rodrigues D., Timoteo C. G., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Aug, Volume 16, Number 6, p.881-8, (2011) AbstractWebsite

The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an E(r)C'(i) catalytic mechanism. An intermolecular electron transfer rate constant of (4 +/- 1) x 10(5) M(-1) s(-1) was estimated for both forms of the enzyme, as well as a similar Michaelis-Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.

Analysis of the electron paramagnetic resonance properties of the [2Fe-2S]1+ centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II, Caldeira, J., Belle V., Asso M., Guigliarelli B., Moura I., Moura J. J., and Bertrand P. , Biochemistry, Mar 14, Volume 39, Number 10, p.2700-7, (2000) AbstractWebsite

Molybdoenzymes of the xanthine oxidase family contain two [2Fe-2S](1+,2+) clusters that are bound to the protein by very different cysteine motifs. In the X-ray crystal structure of Desulfovibrio gigas aldehyde oxidoreductase, the cluster ligated by a ferredoxin-type motif is close to the protein surface, whereas that ligated by an unusual cysteine motif is in contact with the molybdopterin [Romao, M. J., Archer, M., Moura, I., Moura, J. J. G., LeGall, J., Engh, R., Schneider, M., Hof, P., and Huber, R. (1995) Science 270, 1170-1176]. These two clusters display distinct electron paramagnetic resonance (EPR) signals: the less anisotropic one, called signal I, is generally similar to the g(av) approximately 1.96-type signals given by ferredoxins, whereas signal II often exhibits anomalous properties such as very large g values, broad lines, and very fast relaxation properties. A detailed comparison of the temperature dependence of the spin-lattice relaxation time and of the intensity of these signals in D. gigas aldehyde oxidoreductase and in milk xanthine oxidase strongly suggests that the peculiar EPR properties of signal II arise from the presence of low-lying excited levels reflecting significant double exchange interactions. The issue raised by the assignment of signals I and II to the two [2Fe-2S](1+) clusters was solved by using the EPR signal of the Mo(V) center as a probe. The temperature dependence of this signal could be quantitatively reproduced by assuming that the Mo(V) center is coupled to the cluster giving signal I in xanthine oxidase as well as in D. gigas aldehyde oxidoreductase. This demonstrates unambiguously that, in both enzymes, signal I arises from the center which is closest to the molybdenum cofactor.

Analysis, design and engineering of simple iron-sulfur proteins: Tales from rubredoxin and desulforedoxin, Moura, J. J. G., Goodfellow B. J., Romao M. J., Rusnak F., and Moura I. , Comments on Inorganic Chemistry, 1996, Volume 19, Number 1, p.47-+, (1996) AbstractWebsite

The most thoroughly characterized non-heme iron center in biology is Rubredoxin, the simplest member of the iron-sulfur: class of metalloproteins. Rubredoxin contains a high-spin iron atom with tetrahedral coordination by four cysteinyl sulfur atoms. A structural variant of this center is found in Desulforedoxin, the smallest known Rubredoxin type protein. The 3D structure of both Rd and Dr has been determined at high resolution. These two proteins can therefore be used as case studies in which structural control by the polypeptide chain over the metal site can be discussed in detail.

Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, Bursakov, S. A., Gavel O. Y., Di Rocco G., Lampreia J., Calvete J., Pereira A. S., Moura J. J., and Moura I. , J Inorg Biochem, May, Volume 98, Number 5, p.833-40, (2004) AbstractWebsite

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS(4)(2-) moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed.

Application of lactate amperometric sol-gel biosensor to sequential injection determination of L-lactate, Gomes, S. P., Odlozilikova M., Almeida M. G., Araujo A. N., Couto C. M., and Montenegro M. C. , J Pharm Biomed Anal, Mar 12, Volume 43, Number 4, p.1376-81, (2007) AbstractWebsite

This work describes the construction and evaluation of lactate sol-gel biosensors to accomplish the determination of lactate in pharmaceutical products. Lactate oxidase was incorporated in a porous sol-gel film placed onto a platinum-based electrode. Acid and basic catalysis were assessed. When coupled to a sequential injection system (SIA) the biosensor, based on (3-aminopropyl)trimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyl-trimethoxysilane, deionised water, polyethylene glycol 6000 and acid catalyst, presented a range of linearity of 5x10(-5) to 5x10(-3)M. The analytical usefulness of the developed biosensor was evaluated through analysis of commercial pharmaceutical products containing lactate with a sampling rate of 40 samples h(-1). The enzyme remained active for at least 30 days, enabling about 700 determinations without sensitivity decrease.

Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction, Correia, H., Marangon J., Brondino C. D., Moura J. J. G., Romao M. J., Gonzalez P. J., and Santos-Silva T. , J Biol Inorg Chem, Volume 20, p.219-229, (2015)
ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase, Nunes, C. I., Brás J. L., Najmudin S., Moura J. J. G., Moura I., and Carepo M. , J Biol Inorg Chem, Volume 19, p.1277-1285, (2014)
Artefacts induced on c-type haem proteins by electrode surfaces, Paes de Sousa, P. M., Pauleta S. R., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Feb, Volume 16, Number 2, p.209-15, (2011) AbstractWebsite

In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met-His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c(3) from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.

Assignment of individual heme EPR signals of Desulfovibrio baculatus (strain 9974) tetraheme cytochrome c3. A redox equilibria study, Moura, I., Teixeira M., Huynh B. H., Legall J., and Moura J. J. , Eur J Biochem, Sep 15, Volume 176, Number 2, p.365-9, (1988) AbstractWebsite

An EPR redox titration was performed on the tetraheme cytochrome c3 isolated from Desulfovibrio baculatus (strain 9974), a sulfate-reducer. Using spectral differences at different poised redox states of the protein, it was possible to individualize the EPR g-values of each of the four hemes and also to determine the mid-point redox potentials of each individual heme: heme 4 (-70 mV) at gmax = 2.93, gmed = 2.26 and gmin = 1.51; heme 3 (-280 mV) at gmax = 3.41; heme 2 (-300 mV) at gmax = 3.05, gmed = 2.24 and gmin = 1.34; and heme 1 (-355 mV) at gmx = 3.18. A previously described multi-redox equilibria model used for the interpretation of NMR data of D. gigas cytochrome c3 [Santos, H., Moura, J.J.G., Moura, I., LeGall, J. & Xavier, A. V. (1984) Eur. J. Biochem. 141, 283-296] is discussed in terms of the EPR results.

Association of Zn, Cu, Cd and Pb with protein fractions and sub-cellular partitioning in the digestive gland of Octopus vulgaris living in habitats with different metal levels, Raimundo, J., Vale C., Duarte R., and Moura I. , Chemosphere, Nov, Volume 81, Number 10, p.1314-1319, (2010) AbstractWebsite

Zinc Cu Cd and Pb concentrations were determined in protein fractions of digestive gland and in the whole digestive gland of Octopus vulgaris collected from two areas of the Portuguese coast Approximately 95% of Zn 99% of Cu 85-96% of Cd and 77-86% of Pb were stored in the cytosol suggesting the predominance of cytosolic proteins in the trapping these elements Gel filtration chromatography evidenced the presence of two major groups of proteins with high molecular weight (HMW 144 000-130 000 Da) and low molecular weight (LMW 11 000-6000 Da) The following metal-protein associations were found Zn was distributed between HMW and LMW Cu and Cd in LMW proteins with a minor association with HMW and Pb in HMW proteins The strong positive correlations between Cd Zn and Cu and LMW proteins point to the presence of metalloproteins with high affinity to these elements A shift was registered between the maximum of the ratio 254 280 nm and metal concentrations in the chromatographic profiles This shift may result from metallothioneins having a small participation in the metal binding or protein purification was insufficient and various LMW proteins may be interfering (C) 2010 Elsevier Ltd All rights reserved