An efficient poly(pyrrole-viologen)-nitrite reductase biosensor for the mediated detection of nitrite,
Da Silva, S., Cosnier S., Almeida M. G., and Moura J. J. G.
, Electrochemistry Communications, Apr, Volume 6, Number 4, p.404-408, (2004)
AbstractA biosensor for nitrite analytical determination was developed using a cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desufuricans ATCC 27774 immobilized and electrically connected on a glassy carbon electrode by entrapment in an electrogencrated poly(pyrrole-viologen) matrix. The modified bioelectrode was studied by cyclic voltammetry and a catalytic current was observed in presence of nitrite. The linear range of the electrode response was 5.4-43.4 muM. The detection limit and the sensitivity were 5.4 muM and 1721 mA M-1 cm(-2), respectively. The K-M(app) value determined from the Lineweaver-Burk plot was 86 muM. The biosensor fully maintained its electroenzymatic activity towards nitrite after four days.. No catalytic response was observed in the presence of nitrate ions while interference from sulfites was considered negligible. Finally, the biosensor composition was optimized in term of monomer-enzyme ratio. (C) 2004 Elsevier B.V. All rights reserved.
Magnetization of the oxidized and reduced three-iron cluster of Desulfovibrio gigas ferredoxin II,
Day, E. P., Peterson J., Bonvoisin J. J., Moura I., and Moura J. J.
, J Biol Chem, Mar 15, Volume 263, Number 8, p.3684-9, (1988)
AbstractThe saturation magnetizations of the three iron cluster of ferredoxin II of Desulfovibrio gigas in both the oxidized and reduced states have been studied at fixed magnetic fields up to 4.5 tesla over the temperature range from 1.8 to 200 K. The low field (0.3 tesla) susceptibility of oxidized ferredoxin II obeys the Curie law over this entire temperature range. This establishes -2Jox greater than 200 cm-1 as the lower limit for the antiferromagnetic exchange coupling of oxidized ferredoxin II. The saturation magnetizations of reduced ferredoxin II at several fixed fields yield a nested family of curves which can be fit with spin S = 2 and D = -2.7(4) cm-1 (with E/D assigned the value 0.23 as determined by Mossbauer and EPR spectra). The low field susceptibility of reduced ferredoxin II also obeys the Curie law from approximately 4 up to 200 K. This establishes -2Jred greater than 40 cm-1 as the lower limit for the antiferromagnetic coupling of reduced ferredoxin II.
Kinetic studies on the electron-transfer reaction between cytochrome c3 and flavodoxin from Desulfovibrio vulgaris strain Hildenborough,
De Francesco, R., Edmondson D. E., Moura I., Moura J. J., and Legall J.
, Biochemistry, Aug 30, Volume 33, Number 34, p.10386-92, (1994)
AbstractThe kinetic properties of the electron-transfer process between reduced Desulfovibrio vulgaris cytochrome c3 and D. vulgaris flavodoxin have been studied by anaerobic stopped-flow techniques. Anaerobic titrations of reduced cytochrome c3 with oxidized flavodoxin show a stoichiometry of 4 mol of flavodoxin required to oxidize the tetraheme cytochrome. Flavodoxin neutral semiquinone and oxidized cytochrome c3 are the only observable products of the reaction. At pH 7.5, the four-electron-transfer reaction is biphasic. Both the rapid and the slow phases exhibit limiting rates as the flavodoxin concentration is increased with respective rates of 73.4 and 18.5 s-1 and respective Kd values of 65.9 +/- 9.4 microM and 54.5 +/- 13 microM. A biphasic electron-transfer rate is observed when the ionic strength is increased to 100 mM KCl; however, the observed rate is no longer saturable, and relative second-order rate constants of 5.3 x 10(5) and 8.5 x 10(4) M-1 s-1 are calculated. The magnitude of the rapid phase of electron transfer diminishes with the level of heme reduction when varying reduced levels of the cytochrome are mixed with oxidized flavodoxin. No rapid phase is observed when 0.66e(-)-reduced cytochrome c3 reacts with an approximately 25-fold molar excess of flavodoxin. At pH 6.0, the electron-transfer reaction is monophasic with a limiting rate of 42 +/- 1.4 s-1 and a Kd value of approximately 8 microM. Increasing the ionic strength of the pH 6.0 solution to 100 microM KCl results in a biphasic reaction with relative second-order rate constants of 5.3 x 10(5) and 1.1 x 10(4) M-1 s-1. Azotobacter vinelandii flavodoxin reacts with reduced D. vulgaris cytochrome c3 in a slow, monophasic manner with limiting rate of electron transfer of 1.2 +/- 0.06 s-1 and a Kd value of 80.9 +/- 10.7 microM. These results are discussed in terms of two equilibrium conformational states for the cytochrome which are dependent on the pH of the medium and the level of heme reduction [Catarino et al. (1991) Eur. J. Biochem. 207, 1107-1113].
Kinetic-Studies On The Electron-Transfer Reaction Between Cytochrome-C(3) And Flavodoxin From Desulfovibrio-vulgaris Strain Hildenborough,
De Francesco, R., Edmondson D. E., Moura I., Moura J. J. G., and Legall J.
, Biochemistry, Aug 30, Volume 33, Number 34, p.10386-10392, (1994)
AbstractThe kinetic properties of the electron-transfer process between reduced Desulfovibrio vulgaris cytochrome c(3) and D. vulgaris flavodoxin have been studied by anaerobic stopped-flow techniques. Anaerobic titrations of reduced cytochrome c(3) with oxidized flavodoxin show a stoichiometry of 4 mol of flavodoxin required to oxidize the tetraheme cytochrome. Flavodoxin neutral semiquinone and oxidized cytochrome c(3) are the only observable products of the reaction. At pH 7.5, the four-electron-transfer reaction is biphasic. Both the rapid and the slow phases exhibit limiting rates as the flavodoxin concentration is increased with respective rates of 73.4 and 18.5 s(-1) and respective K-d values of 65.9 +/- 9.4 mu M and 54.5 +/- 13 CIM. A biphasic electron-transfer rate is observed when the ionic strength is increased to 100 mM KCl; however, the observed rate is no longer saturable, and relative second-order rate constants of 5.3 X 10(5) and 8.5 x 10(4) M(-1) s(-1) are calculated. The magnitude of the rapid phase of electron transfer diminishes with the level of heme reduction when varying reduced levels of the cytochrome are mixed with oxidized flavodoxin. No rapid phase is observed when 0.66e(-)-reduced cytochrome c(3) reacts with an similar to 25-fold molar excess of flavodoxin. At pH 6.0, the electron-transfer reaction is monophasic with a limiting rate of 42 +/- 1.4 s(-1) and a Kd value of similar to 8 mu M. Increasing the ionic strength of the pH 6.0 solution to 100 mu M KCl results in a biphasic reaction with relative second-order rate constants of 5.3 x 10(5) and 1.1 x 10(4) M(-1) s(-1) Azotobacter vinelandii flavodoxin reacts with reduced D. vulgaris cytochrome cs in a slow, monophasic manner with limiting rate of electron transfer of 1.2 +/- 0.06 s(-1) and a K-d value of 80.9 +/- 10.7 mu M. These results are discussed in terms of two equilibrium conformational states for the cytochrome which are dependent on the pH of the medium and the level of heme reduction [Catarino et al. (1991) Eur. J. Biochem. 207, 1107-1113].
Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies,
Dell'Acqua, S., Pauleta S. R., Monzani E., Pereira A. S., Casella L., Moura J. J., and Moura I.
, Biochemistry, Oct 14, Volume 47, Number 41, p.10852-62, (2008)
AbstractThe multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.
The tetranuclear copper active site of nitrous oxide reductase: the CuZ center,
Dell'Acqua, S., Pauleta S. R., Moura I., and Moura J. J.
, J Biol Inorg Chem, Feb, Volume 16, Number 2, p.183-94, (2011)
AbstractThis review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes, reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this enzyme, opened a novel area of research in metallobiochemistry. In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered, the CuZ center remains a scientific challenge, with many hypotheses still being formed.
A new CuZ active form in the catalytic reduction of N(2)O by nitrous oxide reductase from Pseudomonas nautica,
Dell'Acqua, S., Pauleta S. R., Paes de Sousa P. M., Monzani E., Casella L., Moura J. J., and Moura I.
, J Biol Inorg Chem, Aug, Volume 15, Number 6, p.967-76, (2010)
AbstractThe final step of bacterial denitrification, the two-electron reduction of N(2)O to N(2), is catalyzed by a multi-copper enzyme named nitrous oxide reductase. The catalytic centre of this enzyme is a tetranuclear copper site called CuZ, unique in biological systems. The in vitro reconstruction of the activity requires a slow activation in the presence of the artificial electron donor, reduced methyl viologen, necessary to reduce CuZ from the resting non-active state (1Cu(II)/3Cu(I)) to the fully reduced state (4Cu(I)), in contrast to the turnover cycle, which is very fast. In the present work, the direct reaction of the activated form of Pseudomonas nautica nitrous oxide reductase with stoichiometric amounts of N(2)O allowed the identification of a new reactive intermediate of the catalytic centre, CuZ degrees , in the turnover cycle, characterized by an intense absorption band at 680 nm. Moreover, the first mediated electrochemical study of Ps. nautica nitrous oxide reductase with its physiological electron donor, cytochrome c-552, was performed. The intermolecular electron transfer was analysed by cyclic voltammetry, under catalytic conditions, and a second-order rate constant of (5.5 +/- 0.9) x 10(5) M(-1 )s(-1) was determined. Both the reaction of stoichiometric amounts of substrate and the electrochemical studies show that the active CuZ degrees species, generated in the absence of reductants, can rearrange to the resting non-active CuZ state. In this light, new aspects of the catalytic and activation/inactivation mechanism of the enzyme are discussed.
The electron transfer complex between nitrous oxide reductase and its electron donors,
Dell'Acqua, S., Moura I., Moura J. J., and Pauleta S. R.
, J Biol Inorg Chem, Dec, Volume 16, Number 8, p.1241-54, (2011)
AbstractIdentifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N(2)OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N(2)OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N(2)OR, or an electrostatic nature, in the case of P. denitrificans N(2)OR and A. cycloclastes N(2)OR. A set of well-conserved residues on the N(2)OR surface were identified as being part of the electron transfer pathway from the redox partner to N(2)OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N(2)OR sequence). Moreover, we built a model for Wolinella succinogenes N(2)OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N(2)OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N(2)OR domain is similar to that found in the other electron transfer complexes.
Biochemical characterization of the purple form of Marinobacter hydrocarbonoclasticus nitrous oxide reductase,
Dell'Acqua, S., Pauleta S. R., Moura J. J., and Moura I.
, Philos Trans R Soc Lond B Biol Sci, Volume 367, Issue 1593, p.1204-1212, (2012)