Publications

Export 67 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
H
A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes, Huber, R., Hof P., Duarte R. O., Moura J. J., Moura I., Liu M. Y., Legall J., Hille R., Archer M., and Romao M. J. , Proc Natl Acad Sci U S A, Aug 20, Volume 93, Number 17, p.8846-51, (1996) AbstractWebsite

The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.

J
Spectroscopic definition of the CuZ° intermediate in turnover of nitrous oxide reductase and molecular insight into the catalytic mechanism, Johnston, E. M., Carreira C., Dell'Acqua S., Dey S. G., Pauleta S. R., Moura I., and Solomon E. I. , J Am Chem Soc, Volume 139, p.4462-4476, (2017)
L
Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeglobus fulgidus, Lampreia, J., Fauque G., Speich N., Dahl C., Moura I., Truper H. G., and Moura J. J. , Biochem Biophys Res Commun, Nov 27, Volume 181, Number 1, p.342-7, (1991) AbstractWebsite

Adenylyl sulfate (APS) reductase, the key enzyme of the dissimilatory sulfate respiration, catalyzes the reduction of APS (the activated form of sulfate) to sulfite with release of AMP. A spectroscopic study was carried out with the APS reductase purified from the extremely thermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus DSM 4304. Combined ultraviolet/visible spectroscopy and low temperature electron paramagnetic resonance (EPR) studies were used in order to characterize the active centers and the reactivity towards AMP and sulfite of this enzyme. The A. fulgidus APS reductase is an iron-sulfur flavoprotein containing two distinct [4Fe-4S] clusters (Centers I and II) very similar to the homologous enzyme from Desulfovibrio gigas. Center I, which has a high redox potential, is reduced by AMP and sulfite, and Center II has a very negative redox potential.

Sample treatment for protein identification by mass spectrometry-based techniques, Lopez-Ferrer, D., Canas B., Vazquez J., Lodeiro C., Rial-Otero R., Moura I., and Capelo J. L. , Trac-Trends in Analytical Chemistry, Nov, Volume 25, Number 10, p.996-1005, (2006) AbstractWebsite

Rapid identification of proteins is of primary importance for the analytical community. Protein-biomarker discovery for medical diagnostics or pharmacological purposes is becoming one of the hottest research topics. Moreover, rapid identification of proteins can help unambiguous bacterial and virus detection. In addition, the fast identification of bacteria can be used to beat bioterrorism. As a consequence, new analytical methodologies have emerged recently with the aim of making protein analysis as fast and as confident as possible. In this article, we critically review the new trends in sample treatment for protein identification and comment on the prospects for the future in this promising analytical area. (c) 2006 Elsevier Ltd. All rights reserved.

M
Screen‐Printed Electrodes Testing for Detection of Potential Stress Biomarkers in Sweat, M.J., Nunes, G.N. Valério, A. Samhan‐Arias, J.J.G. Moura, C. Rouco, Sousa J. P., and C.M. Cordas , Electrocatalysis, Volume 13, p.299–305, (2022)
The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3, Ma, J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., and Shelnutt J. A. , Biochemistry, Sep 8, Volume 37, Number 36, p.12431-42, (1998) AbstractWebsite

Resonance Raman (RR) spectroscopy, molecular mechanics (MM) calculations, and normal-coordinate structural decomposition (NSD) have been used to investigate the conformational differences in the hemes in ferricytochromes c3. NSD analyses of heme structures obtained from X-ray crystallography and MM calculations of heme-peptide fragments of the cytochromes c3 indicate that the nonplanarity of the hemes is largely controlled by a fingerprint peptide segment consisting of two heme-linked cysteines, the amino acids between the cysteines, and the proximal histidine ligand. Additional interactions between the heme and the distal histidine ligand and between the heme propionates and the protein also influence the heme conformation, but to a lesser extent than the fingerprint peptide segment. In addition, factors that influence the folding pattern of the fingerprint peptide segment may have an effect on the heme conformation. Large heme structural differences between the baculatum cytochromes c3 and the other proteins are uncovered by the NSD procedure [Jentzen, W., Ma, J.-G., and Shelnutt, J. A. (1998) Biophys. J. 74, 753-763]. These heme differences are mainly associated with the deletion of two residues in the covalently linked segment of hemes 4 for the baculatum proteins. Furthermore, some of these structural differences are reflected in the RR spectra. For example, the frequencies of the structure-sensitive lines (nu4, nu3, and nu2) in the high-frequency region of the RR spectra are lower for the Desulfomicrobium baculatum cytochromes c3 (Norway 4 and 9974) than for the Desulfovibrio (D.) gigas, D. vulgaris, and D. desulfuricans strains, consistent with a more ruffled heme. Spectral decompositions of the nu3 and nu10 lines allow the assignment of the sublines to individual hemes and show that ruffling, not saddling, is the dominant factor influencing the frequencies of the structure-sensitive Raman lines. The distinctive spectra of the baculatum strains investigated are a consequence of hemes 2 and 4 being more ruffled than is typical of the other proteins.

Synthesis and characterization of [S2MoS2Cu(n-SPhF)]2−(n=o, m, p) clusters: Potential 19F-NMR structural probes for Orange Protein, Maiti, B. K., Avilés T., Moura I., Pauleta S. R., and Moura J. J. G. , Inorg Chem Commun, Volume 45, p.97-100, (2014)
The small iron-sulfur protein from the ORP operon binds a [2Fe-2S] cluster, Maiti, B. K., Moura I., Moura J. J. G., and Pauleta S. R. , Biochim Biophys Acta, Volume 1857, p.1422-1429, (2016) Website
Sulfide and transition metals - A partnership for life, Maiti, B. K., Maia L. B., and Moura J. J. G. , J Inorg Biochem, Volume 227, p.111687, (2022) Website
Synthesis of [MoS4]2 – M (M = Cu and Cd) clusters: Potential NMR structural probes for orange protein, Maiti, B. K., Avilés T., Matzapetakis M., Moura I., Pauleta S. R., and Moura J. J. G. , Eur J Inorg Chem , Volume 2012, p.4159-4166, (2012)
Substrate-dependent modulation of the enzymatic catalytic activity: Reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Marangon, J., de Sousa Paes P. M., Moura I., Brondino C. D., Moura J. J., and González P. J. , Biochim Biophys Acta, Volume 1817, Issue 7, p.1072-1082, (2012)
A single histidine is required for activity of cytochrome c peroxidase from Paracoccus denitrificans, McGinnity, D. F., Devreese B., Prazeres S., Van Beeumen J., Moura I., Moura J. J., and Pettigrew G. W. , J Biol Chem, May 10, Volume 271, Number 19, p.11126-33, (1996) AbstractWebsite

The diheme cytochrome c peroxidase from Paracoccus denitrificans was modified with the histidine-specific reagent diethyl pyrocarbonate. At low excess of reagent, 1 mol of histidine was modified in the oxidized enzyme, and modification was associated with loss of the ability to form the active state. With time, the modification reversed, and the ability to form the active state was recovered. The agreement between the spectrophotometric measurement of histidine modification and radioactive incorporation using a radiolabeled reagent indicated little modification of other amino acids. However, the reversal of histidine modification observed spectrophotometrically was not matched by loss of radioactivity, and we propose a slow transfer of the ethoxyformyl group to an unidentified amino acid. The presence of CN- bound to the active peroxidatic site of the enzyme led to complete protection of the essential histidine from modification. Limited subtilisin treatment of the native enzyme followed by tryptic digest of the C-terminal fragment (residues 251-338) showed that radioactivity was located in a peptide containing a single histidine at position 275. We propose that this conserved residue, in a highly conserved region, is central to the function of the active mixed-valence state.

Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies, Morais, J., Palma P. N., Frazao C., Caldeira J., Legall J., Moura I., Moura J. J., and Carrondo M. A. , Biochemistry, Oct 3, Volume 34, Number 39, p.12830-41, (1995) AbstractWebsite

The three-dimensional X-ray structure of cytochrome c3 from a sulfate reducing bacterium, Desulfovibrio desulfuricans ATCC 27774 (107 residues, 4 heme groups), has been determined by the method of molecular replacement [Frazao et al. (1994) Acta Crystallogr. D50, 233-236] and refined at 1.75 A to an R-factor of 17.8%. When compared with the homologous proteins isolated from Desulfovibrio gigas, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris Miyazaki F, and Desulfomicrobium baculatus, the general outlines of the structure are essentialy kept [heme-heme distances, heme-heme angles, His-His (axial heme ligands) dihedral angles, and the geometry of the conserved aromatic residues]. The three-dimensional structure of D. desulfuricans ATCC 27774 cytochrome c3Dd was modeled on the basis of the crystal structures available and amino acid sequence comparisons within this homologous family of multiheme cytochromes [Palma et al. (1994) Biochemistry 33, 6394-6407]. This model is compared with the refined crystal structure now reported, in order to discuss the validity of structure prediction methods and critically evaluate the steps used to predict protein structures by homology modeling. The four heme midpoint redox potentials were determined by using deconvoluted electron paramagnetic resonance (EPR) redox titrations. Structural criteria (electrostatic potentials, heme ligand orientation, EPR g values, heme exposure, data from protein-protein interaction studies) are invoked to assign the redox potentials corresponding to each specific heme in the three-dimensional structure.

Study of the spin-spin interactions between the metal centers of Desulfovibrio gigas aldehyde oxidoreductase: identification of the reducible sites of the [2Fe-2S]1+,2+ clusters, More, C., Asso M., Roger G., Guigliarelli B., Caldeira J., Moura J., and Bertrand P. , Biochemistry, Aug 30, Volume 44, Number 34, p.11628-35, (2005) AbstractWebsite

The aldehyde oxidoreductase from Desulfovibrio gigas belongs to the family of molybdenum hydroxylases. Besides a molybdenum cofactor which constitutes their active site, these enzymes contain two [2Fe-2S](2+,1+) clusters which are believed to transfer the electrons provided by the substrate to an acceptor which is either a FAD group or an electron-transferring protein. When the three metal centers of D. gigas AOR are simultaneously paramagnetic, splittings due to intercenter spin-spin interactions are visible when the EPR spectra are recorded at low temperatures. By studying quantitatively these interactions with a model based on the X-ray crystal structure, which takes into consideration the interactions between the magnetic moments carried by all the metal sites of the system, it is possible to determine the location of the reducible sites of the [2Fe-2S] clusters. When combined with the electron-transfer pathways proposed on the basis of the X-ray crystal structure, the results provide a detailed description of the electron-transfer system of D. gigas AOR.

Structural model of the Fe-hydrogenase/cytochrome c553 complex combining transverse relaxation-optimized spectroscopy experiments and soft docking calculations, Morelli, X., Czjzek M., Hatchikian C. E., Bornet O., Fontecilla-Camps J. C., Palma N. P., Moura J. J., and Guerlesquin F. , J Biol Chem, Jul 28, Volume 275, Number 30, p.23204-10, (2000) AbstractWebsite

Fe-hydrogenase is a 54-kDa iron-sulfur enzyme essential for hydrogen cycling in sulfate-reducing bacteria. The x-ray structure of Desulfovibrio desulfuricans Fe-hydrogenase has recently been solved, but structural information on the recognition of its redox partners is essential to understand the structure-function relationships of the enzyme. In the present work, we have obtained a structural model of the complex of Fe-hydrogenase with its redox partner, the cytochrome c(553), combining docking calculations and NMR experiments. The putative models of the complex demonstrate that the small subunit of the hydrogenase has an important role in the complex formation with the redox partner; 50% of the interacting site on the hydrogenase involves the small subunit. The closest contact between the redox centers is observed between Cys-38, a ligand of the distal cluster of the hydrogenase and Cys-10, a ligand of the heme in the cytochrome. The electron pathway from the distal cluster of the Fe-hydrogenase to the heme of cytochrome c(553) was investigated using the software Greenpath and indicates that the observed cysteine/cysteine contact has an essential role. The spatial arrangement of the residues on the interface of the complex is very similar to that already described in the ferredoxin-cytochrome c(553) complex, which therefore, is a very good model for the interacting domain of the Fe-hydrogenase-cytochrome c(553).

Simulation of the electrochemical behavior of multi-redox systems. Current potential studies on multiheme cytochromes, Moreno, C., Campos A., Teixeira M., Legall J., Montenegro M. I., Moura I., Van Dijk C., and Moura J. G. , Eur J Biochem, Dec 5, Volume 202, Number 2, p.385-93, (1991) AbstractWebsite

The direct unmediated electrochemical response of the tetrahemic cytochrome c3 isolated from sulfate reducers Desulfovibrio baculatus (DSM 1743) and D. vulgaris (strain Hildenborough), was evaluated using different electrode systems [graphite (edge cut), gold, semiconductor (InO2) and mercury)] and different electrochemical methods (cyclic voltammetry and differential pulse voltammetry). A computer program was developed for the theoretical simulation of a complete cyclic voltammetry curve, based on the method proposed by Nicholson and Shain [Nicholson, R.S. & Shain, I. (1964) Anal. Chem. 36, 706-723], using the Gauss-Legendre method for calculation of the integral equations. The experimental data obtained for this multi-redox center protein was deconvoluted in to the four redox components using theoretically generated cyclic voltammetry curves and the four mid-point reduction potentials determined. The pH dependence of the four reduction potentials was evaluated using the deconvolution method described.

Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin, Moura, I., Teixeira M., Legall J., and Moura J. J. , J Inorg Biochem, Nov, Volume 44, Number 2, p.127-39, (1991) AbstractWebsite

The single iron site of rubredoxin was replaced by nickel and cobalt. The near-infrared/visible/UV spectra of these metal derivatives show ligand-field transitions and charge-transfer bands which closely resemble those of simple tetrathiolate complexes, indicating a tetrahedral arrangement of the sulfur cysteinyl ligands around the metal core. The 1H NMR spectra of the nickel and cobalt derivatives reveal extremely low-field contact shifted resonances of one proton intensity assigned to beta-CH2 and alpha-CH cysteinyl protons. Other well resolved resonances shifted out of the main protein spectral envelope are also observed and probably arise from contact plus pseudocontact shift mechanisms. Rubredoxins from different sulfate reducers were metal substituted and assignments of aliphatic protons are tentatively proposed, taking advantage of the amino acid sequence homologies. The present data is promising in terms of structural analysis of the coordination sphere of the metal core. It was also shown that replacement of the iron atom of desulforedoxin, a close analogue of rubredoxin, by cobalt and nickel was possible.

Structural aspects of denitrifying enzymes, Moura, I., and Moura J. J. , Curr Opin Chem Biol, Apr, Volume 5, Number 2, p.168-75, (2001) AbstractWebsite

The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.

Spectroscopic characterization of a high-potential monohaem cytochrome from Wolinella succinogenes, a nitrate-respiring organism. Redox and spin equilibria studies, Moura, I., Liu M. Y., Costa C., Liu M. C., Pai G., Xavier A. V., Legall J., Payne W. J., and Moura J. J. , Eur J Biochem, Nov 15, Volume 177, Number 3, p.673-82, (1988) AbstractWebsite

When purified, a high-potential c-type monohaem cytochrome from the nitrate-respiring organism, Wollinella succinogenes (VPI 10659), displayed a minimum molecular mass of 8.2 kDa and 0.9 mol iron and 0.95 mol haem groups/mol protein. Visible light spectroscopy suggested the presence of an equilibrium between two ligand arrangements around the haem, i.e. an absorption band at 695 nm characteristic of haem-methionine coordination (low-spin form) coexisting with a high-spin form revealed by a band at 619 nm and a shoulder at 498 nm. The mid-point redox potential measured by visible redox titration of the low-spin form was approximately +100 mV. Binding cyanide (Ka = 5 x 10(5) M-1) resulted in the displacement of the methionyl axial residue, and full conversion to a low-spin, cyanide-bound form. Structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized state, the pH dependence of the haem methyl resonances (pH range 5-10) and the magnetic susceptibility measurements (using an NMR method) were consistent with the visible light spectroscopic data for the presence of a high-spin/low-spin equilibrium with a transition pKa of 7.3. The spin equilibrium was fast on the NMR time scale. The haem methyl resonances presented large downfield chemical shifts. An unusually broad methyl resonance at around 35 ppm (pH = 7.5, 25 degrees C) was extremely temperature-dependent [delta(323 K) - delta(273 K) = 7.2 ppm] and was assigned to the S-CH3 group of the axial methionine. In the ferrous state only a low-spin form is present. The haem meso protons, the methyl group and the methylene protons from the axial methionine were identified in the reduced form. The resonances from the aromatic residues (three tyrosines and one phenylalanine) were also assigned. Detailed monitoring of the NMR-redox pattern of the monohaem cytochrome from the fully reduced up to the fully oxidized state revealed that the rate of the intermolecular electronic exchange process was approximately 6 x 10(6) M-1 s-1 at 303 K and pH = 6.31. A dihaem cytochrome also present in the crude cell extract and purified to a homogeneous state, exhibited a molecular mass of 11 kDa and contained 2.43 mol iron and 1.89 mol haem c moieties/mol cytochrome. The absorption spectrum in the visible region exhibited no band at 695 nm, suggesting that methione is not a ligand for either of the two haems. Recovery of only small amounts of this protein prevented more detailed structural analyzes.

Simple and Complex Iron-Sulfur Proteins in Sulfate Reducing Bacteria, Moura, Isabel, Pereira Alice S., Tavares Pedro, and Moura José J. G. , Advances in Inorganic Chemistry, Volume Volume 47, p.361-419, (1999) Abstract
n/a
Structural control of the redox potentials and of the physiological activity by oligomerization of ferredoxin, Moura, J. J., Xavier A. V., Hatchikian E. C., and Legall J. , FEBS Lett, May 1, Volume 89, Number 1, p.177-9, (1978) AbstractWebsite
n/a
Structural and functional approach toward a classification of the complex cytochrome c system found in sulfate-reducing bacteria, Moura, J. J., Costa C., Liu M. Y., Moura I., and Legall J. , Biochim Biophys Acta, May 23, Volume 1058, Number 1, p.61-6, (1991) AbstractWebsite

Following the discovery of the tetraheme cytochrome c3 in the strict anaerobic sulfate-reducing bacteria (Postgate, J.R. (1954) Biochem. J. 59, xi; Ishimoto et al. (1954) Bull. Chem. Soc. Japan 27, 564-565), a variety of c-type cytochromes (and others) have been reported, indicating that the array of heme proteins in these bacteria is complex. We are proposing here a tentative classification of sulfate- (and sulfur-) reducing bacteria cytochromes c based on: number of hemes per monomer, heme axial ligation, heme spin state and primary structures (whole or fragmentary). Different and complementary spectroscopic tools have been used to reveal the structural features of the heme sites.

N
Screening of Potential Stress Biomarkers in Sweat Associated with Sports Training, Nunes, M. J., Cordas C. M., Moura J. J. G., Noronha J. P., and Branco L. C. , Sports Medicine - Open, Volume 7, p.8, (2021)
O
Study of membrane ageing and grafting mechanisms using electron paramagnetic resonance, Oliveira, F. R. P., Matos C. T., Moura J. J. G., Portugal C. A. M., and Crespo J. G. , Desalination Water Treatment, Volume 27, p.141–149, (2011)
P
Synechocystis ferredoxin/ferredoxin-NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-restrained docking, Palma, P. N., Lagoutte B., Krippahl L., Moura J. J., and Guerlesquin F. , FEBS Lett, Aug 29, Volume 579, Number 21, p.4585-90, (2005) AbstractWebsite

Ferredoxin (Fd) and ferredoxin-NADP(+)-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd-FNR complex in the presence of NADP+ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes.