Publications

Export 147 results:
Sort by: Author Title Type [ Year  (Desc)]
2005
Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays, Santos-Silva, T., Trincao J., Carvalho A. L., Bonifacio C., Auchere F., Moura I., Moura J. J., and Romao M. J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Nov 1, Volume 61, Number Pt 11, p.967-70, (2005) AbstractWebsite

Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His)4Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K3Fe(CN)6 belonged to space group P2(1) (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 A, beta = 106.9 degrees) and diffracted beyond 1.60 A resolution, while crystals grown in the presence of Na2IrCl6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 A, beta = 104.9 degrees) and diffracted beyond 1.55 A. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (lambda = 1.542 A) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2(1) data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.

Isolation and spectroscopic characterization of the membrane-bound nitrate reductase from Pseudomonas chlororaphis DSM 50135, Pinho, D., Besson S., Silva P. J., de Castro B., and Moura I. , Biochimica Et Biophysica Acta-General Subjects, May 25, Volume 1723, Number 1-3, p.151-162, (2005) AbstractWebsite

A nitrate reductase was solubilized with Triton X-100 from the membranes of Pseudomonas chlororaphis DSM 50135 grown microaerobically in the presence of nitrate. Like other membrane-bound nitrate reductases, it contains three subunits, of 129, 66 (64) and 24 kDa, referred to in the literature as alpha, beta and gamma, respectively. Electrocatalytic studies revealed that only the membrane-bound, not the solubilized form of the enzyme, can accept electrons from a menaquinone analog, menadione, whereas both forms can accept electrons from methylviologen. The isolated enzyme possesses several iron-sulfur clusters and a molybdopterin guanine dinucleotide active center. The iron-sulfur clusters can be grouped in two classes according to their redox properties, the high-potential and low-potential clusters. In the as-isolated enzyme, two forms of the molybdenum center, high- and low-pH, are detectable by electron paramagnetic resonance spectroscopy. The low-pH form shows a hyperfine splitting due to a proton, suggesting the presence of an -OHx ligand. Dithionite reduces the Mo(V) center to Mo(W) and subsequent reoxidization with nitrate originates a new Mo(V) signal, identical to the oxidized low-pH form but lacking its characteristic hyperfine splitting. The isolated preparation also contains heme c (in a sub-stoichiometric amount) with the ability to relay electrons to the molybdenum center, suggesting that this nitrate reductase may contain heme c instead of the heme b usually found in this class of enzymes. (c) 2005 Elsevier B.V. All rights reserved.

Study of the spin-spin interactions between the metal centers of Desulfovibrio gigas aldehyde oxidoreductase: identification of the reducible sites of the [2Fe-2S]1+,2+ clusters, More, C., Asso M., Roger G., Guigliarelli B., Caldeira J., Moura J., and Bertrand P. , Biochemistry, Aug 30, Volume 44, Number 34, p.11628-35, (2005) AbstractWebsite

The aldehyde oxidoreductase from Desulfovibrio gigas belongs to the family of molybdenum hydroxylases. Besides a molybdenum cofactor which constitutes their active site, these enzymes contain two [2Fe-2S](2+,1+) clusters which are believed to transfer the electrons provided by the substrate to an acceptor which is either a FAD group or an electron-transferring protein. When the three metal centers of D. gigas AOR are simultaneously paramagnetic, splittings due to intercenter spin-spin interactions are visible when the EPR spectra are recorded at low temperatures. By studying quantitatively these interactions with a model based on the X-ray crystal structure, which takes into consideration the interactions between the magnetic moments carried by all the metal sites of the system, it is possible to determine the location of the reducible sites of the [2Fe-2S] clusters. When combined with the electron-transfer pathways proposed on the basis of the X-ray crystal structure, the results provide a detailed description of the electron-transfer system of D. gigas AOR.

Purification and preliminary characterization of tetraheme cytochrome c3 and adenylylsulfate reductase from the peptidolytic sulfate-reducing bacterium Desulfovibrio aminophilus DSM 12254, Lopez-Cortes, A., Bursakov S., Figueiredo A., Thapper A. E., Todorovic S., Moura J. J., Ollivier B., Moura I., and Fauque G. , Bioinorg Chem Appl, p.81-91, (2005) AbstractWebsite

Two proteins were purified and preliminarily characterized from the soluble extract of cells (310 g, wet weight) of the aminolytic and peptidolytic sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254. The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase, a key enzyme in the microbial dissimilatory sulfate reduction, has been purified in three chromatographic steps (DEAE-Biogel A, Source 15, and Superdex 200 columns). It contains two different subunits with molecular masses of 75 and 18 kDa. The fraction after the last purification step had a purity index (A(278nm) / A(388nm)) of 5.34, which was used for further EPR spectroscopic studies. The D. aminophilus APS reductase is very similar to the homologous enzymes isolated from D. gigas and D. desulfuricans ATCC 27774. A tetraheme cytochrome c(3) (His-heme iron-His) has been purified in three chromatographic steps (DEAE- Biogel A, Source 15, and Biogel-HTP columns) and preliminarily characterized. It has a purity index ([A(553nm) - A(570nm)](red) / A(280nm)) of 2.9 and a molecular mass of around 15 kDa, and its spectroscopic characterization (NMR and EPR) has been carried out. This hemoprotein presents similarities with the tetraheme cytochrome c(3) from Desulfomicrobium (Des.) norvegicum (NMR spectra, and N-terminal amino acid sequence).

2004
Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases, Moura, J. J., Brondino C. D., Trincao J., and Romao M. J. , J Biol Inorg Chem, Oct, Volume 9, Number 7, p.791-9, (2004) AbstractWebsite

Molybdenum and tungsten are second- and third-row transition elements, respectively, which are found in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen atom transfer reactions. Mononuclear Mo-containing enzymes have been classified into three families: xanthine oxidase, DMSO reductase, and sulfite oxidase. The proteins of the DMSO reductase family present the widest diversity of properties among its members and our knowledge about this family was greatly broadened by the study of the enzymes nitrate reductase and formate dehydrogenase, obtained from different sources. We discuss in this review the information of the better characterized examples of these two types of Mo enzymes and W enzymes closely related to the members of the DMSO reductase family. We briefly summarize, also, the few cases reported so far for enzymes that can function either with Mo or W at their active site.

Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, Bursakov, S. A., Gavel O. Y., Di Rocco G., Lampreia J., Calvete J., Pereira A. S., Moura J. J., and Moura I. , J Inorg Biochem, May, Volume 98, Number 5, p.833-40, (2004) AbstractWebsite

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS(4)(2-) moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed.

Crystallization and preliminary X-ray diffraction analysis of the 16-haem cytochrome of Desulfovibrio gigas, Santos-Silva, T., Diasa J. M., Bourenkov G., Bartunik H., Moura I., and Romao M. J. , Acta Crystallographica Section D-Biological Crystallography, May, Volume 60, p.968-970, (2004) AbstractWebsite

High-molecular-weight cytochromes (Hmcs) belong to a large family of multihaem cytochromes in sulfate-reducing bacteria. HmcA is the first cytochrome reported to have 16 c-type haems arranged in its polypeptide chain. The function of this cytochrome is still unknown, although it is clear that it belongs to a membrane-bound complex involved in electron transfer from the periplasm to the membrane. HmcA from Desulfovibrio gigas has been purified and successfully crystallized using the hanging-drop vapour-diffusion method. The crystals grew using PEG and zinc acetate as precipitants to maximum dimensions of 0.2 x 0.2 x 0.2 mm in an orthorhombic space group, with unit-cell parameters a = 88.9, b = 90.9, c = 83.7 Angstrom. The crystals diffracted to beyond 2.07 Angstrom and a MAD data set was collected.

Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria, Brondino, C. D., Passeggi M. C., Caldeira J., Almendra M. J., Feio M. J., Moura J. J., and Moura I. , J Biol Inorg Chem, Mar, Volume 9, Number 2, p.145-51, (2004) AbstractWebsite

We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.

Copper-containing nitrite reductase from Pseudomonas chlororaphis DSM 50135 - Evidence for modulation of the rate of intramolecular electron transfer through nitrite binding to the type 2 copper center, Pinho, D., Besson S., Brondino C. D., de Castro B., and Moura I. , European Journal of Biochemistry, Jun, Volume 271, Number 12, p.2361-2369, (2004) AbstractWebsite

The nitrite reductase (Nir) isolated from Pseudomonas chlororaphis DSM 50135 is a blue enzyme, with type 1 and type 2 copper centers, as in all copper-containing Nirs described so far. For the first time, a direct determination of the reduction potentials of both copper centers in a Cu-Nir was performed: type 2 copper (T2Cu), 172 mV and type 1 copper (T1Cu), 298 mV at pH 7.6. Although the obtained values seem to be inconsistent with the established electron-transfer mechanism, EPR data indicate that the binding of nitrite to the T2Cu center increases its potential, favoring the electron-transfer process. Analysis of the EPR spectrum of the turnover form of the enzyme also suggests that the electron-transfer process between T1Cu and T2Cu is the fastest of the three redox processes involved in the catalysis: (a) reduction of T1Cu; (b) oxidation of T1Cu by T2Cu; and (c) reoxidation of T2Cu by NO2-. Electrochemical experiments show that azurin from the same organism can donate electrons to this enzyme.

Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617, Dias, J. M., Alves T., Bonifacio C., Pereira A. S., Trincao J., Bourgeois D., Moura I., and Romao M. J. , Structure, Jun, Volume 12, Number 6, p.961-973, (2004) AbstractWebsite

Cytochrome c peroxidase (CCP) catalyses the reduction of H2O2 to H2O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca2+ and was refined at 2.2 Angstrom resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca2+ dependent and was crystallized at pH 5.3 and refined at 2.4 Angstrom resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.

X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibriogigas aldehyde dehydrogenase: a member of the xanthine oxidase family, Boer, D. R., Thapper A., Brondino C. D., Romao M. J., and Moura J. J. , J Am Chem Soc, Jul 21, Volume 126, Number 28, p.8614-5, (2004) AbstractWebsite

X-ray crystallography has been used to determine the structure of arsenite-inhibited aldehyde dehydrogenase from Desulfovibrio gigas, a member of the xanthine oxidase family of mononuclear molybdenum enzymes. The structure shows an AsO3 moiety bound to the molybdenum atom of the active site through one of the oxygen atoms. A reduced sample of arsenite-inhibited aldehyde dehydrogenase has a Mo(V) signal that shows anisotropic hyperfine and quadrupole coupling to one arsenic atom. This signal has a strong resemblance with a previously reported signal for arsenite-inhibited xanthine oxidase.

Structural stability of adenylate kinase from the sulfate-reducing bacteria Desulfovibrio gigas, Gavel, O. Y., Bursakov S. A., Pina D. G., Zhadan G. G., Moura J. J., Moura I., and Shnyrov V. L. , Biophys Chem, Jul 1, Volume 110, Number 1-2, p.83-92, (2004) AbstractWebsite

A novel adenylate kinase (AK) has recently been purified from Desulfovibrio gigas and characterized as a Co(2+)/Zn(2+)-containing enzyme: this is an unusual characteristic for AKs from Gram-negative bacteria, in which these enzymes are normally devoid of metals. Here, we studied the conformational stability of holo- and apo-AK as a function of temperature by differential scanning calorimetry (DSC), circular dichroism (CD), and intrinsic fluorescence spectroscopy. The thermal unfolding of AK is a cooperative two-state process, and is sufficiently reversible in the 9-11 pH range, that can be correctly interpreted in terms of a simple two-state thermodynamic model. The spectral parameters as monitored by ellipticity changes in the CD spectra of the enzyme as well as the decrease in tryptophan intensity emission upon heating were seen to be good complements to the highly sensitive but integral DSC-method.

Two azurins with unusual redox and spectroscopic properties isolated from the Pseudomonas chlororaphis strains DSM 50083(T) and DSM 50135, Pinho, D., Besson S., Brondino C. D., Pereira E., de Castro B., and Moura I. , Journal of Inorganic Biochemistry, Feb, Volume 98, Number 2, p.276-286, (2004) AbstractWebsite

Two azurins (Az624 and Az626) were isolated from the soluble extract of two strains of Pseudomonas chlororaphis, DSM 50083(T) and DSM 50135, respectively, grown under microaerobic conditions with nitrate as final electron acceptor. The azurins, purified to electrophoretic homogeneity in three chromatographic steps, exhibit several peculiar properties. They have high reduction potentials and lower pI than most azurins described in the literature. As previously observed for Pseudomonas aeruginosa azurin, their reduction potentials are pH-dependent, but the pK values of their oxidized forms are lower, which suggests that deeper structural changes are associated with the oxidation process of these novel azurins. A hitherto undescribed pH-dependence of the diffusion coefficient was observed in Az624, that could be caused either by conformational changes, or by the formation of supramolecular aggregates associated with a protonation process. Both azurins exhibit axial X-band electron paramagnetic resonance spectra in frozen solution showing a typical hyperfine with the copper nucleus (I = 3/2) and a well-resolved superhyperfine structure with two equivalent N-14 nucleus (I = 1), which is not usually observed for azurins from other species. (C) 2003 Elsevier Inc. All rights reserved.

2003
A further investigation of the cytochrome b5-cytochrome c complex, Banci, L., Bertini I., Felli I. C., Krippahl L., Kubicek K., Moura J. J., and Rosato A. , J Biol Inorg Chem, Sep, Volume 8, Number 7, p.777-86, (2003) AbstractWebsite

The interaction of reduced rabbit cytochrome b(5) with reduced yeast iso-1 cytochrome c has been studied through the analysis of (1)H-(15)N HSQC spectra, of (15)N longitudinal ( R(1)) and transverse ( R(2)) relaxation rates, and of the solvent exchange rates of protein backbone amides. For the first time, the adduct has been investigated also from the cytochrome c side. The analysis of the NMR data was integrated with docking calculations. The result is that cytochrome b(5) has two negative patches capable of interacting with a single positive surface area of cytochrome c. At low protein concentrations and in equimolar mixture, two different 1:1 adducts are formed. At high concentration and/or with excess cytochrome c, a 2:1 adduct is formed. All the species are in fast exchange on the scale of differences in chemical shift. By comparison with literature data, it appears that the structure of one 1:1 adduct changes with the origin or primary sequence of cytochrome b(5).

Isolation and characterisation of metallothionein from the clam Ruditapes decussatus, Simes, D. C., Bebianno M. J., and Moura J. J. , Aquat Toxicol, May 8, Volume 63, Number 3, p.307-18, (2003) AbstractWebsite

Metallothioneins (MT) were obtained after purification from metal-exposed clams (Ruditapes decussatus) using gel-permeation and ion-exchange chromatography. Four cadmium-metallothioneins (CdMTs) were resolved by ion-exchange chromatography and they all had similar molecular weights, high cadmium content and an absorption spectra indicative of the presence of characteristic Cd-S aggregates. The NH(2)-terminal sequence suggests the presence of at least two class I clam MT isoforms. For the other two putative clam CdMTs isolated, the results of the amino acid determination were inconclusive. One was slightly contaminated and the other one had a blocked NH(2)-terminal. These clam metalothioneins contain glycine, which seems to be a common feature of molluscan MT family and exhibited more similarity to oysters than to mussels. Further investigation on the inducibility of these isoforms will be necessary if clams are to be used as biomarkers of metal exposure.

Electrochemical studies on small electron transfer proteins using membrane electrodes, dos Santos, M. M. C., de Sousa P. M. P., Goncalves M. L. S., Krippahl L., Moura J. J. G., Lojou E., and Bianco P. , Journal of Electroanalytical Chemistry, Jan 16, Volume 541, p.153-162, (2003) AbstractWebsite

Membrane electrodes (ME) were constructed using gold, glassy carbon and pyrolytic graphite supports and a dialysis membrane, and used to study the electrochemical behavior of small size electron transfer proteins: monohemic cytochrome c(522) from Pseudomonas nautica and cytochrome c(533) as well as rubredoxin from Desulfovibrio vulgaris. Different electrochemical techniques were used including cyclic voltammetry (CV), square wave voltammetry (SW) and differential pulse voltammetry (DP). A direct electrochemical response was obtained in all cases except with rubredoxin where a facilitator was added to the protein solution entrapped between the membrane and the electrode surface. Formal potentials and heterogeneous charge transfer rate constants were determined from the voltammetric data. The influence of the ionic strength and the pH of the medium on the electrochemical response at the ME were analyzed. The benefits from the use of the ME in protein electrochemistry and its role in modulating the redox behavior are analyzed. A critical comparison is presented with data obtained at non-MEs. Finally, the interactions that must be established between the proteins and the electrode surfaces are discussed, thereby modeling molecular interactions that occur in biological systems. (C) 2002 Elsevier Science B.V. All rights reserved.

Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6), Auchere, F., Raleiras P., Benson L., Venyaminov S. Y., Tavares P., Moura J. J., Moura I., and Rusnak F. , Inorg Chem, Feb 24, Volume 42, Number 4, p.938-40, (2003) AbstractWebsite

Superoxide reductases catalyze the monovalent reduction of superoxide anion to hydrogen peroxide. Spectroscopic evidence for the formation of a dinuclear cyano-bridged adduct after K(3)Fe(CN)(6) oxidation of the superoxide reductases neelaredoxin from Treponema pallidum and desulfoferrodoxin from Desulfovibrio vulgaris was reported. Oxidation with K(3)Fe(CN)(6) reveals a band in the near-IR with lambda(max) at 1020 nm, coupled with an increase of the iron content by almost 2-fold. Fourier transform infrared spectroscopy provided additional evidence with CN-stretching vibrations at 2095, 2025-2030, and 2047 cm(-)(1), assigned to a ferrocyanide adduct of the enzyme. Interestingly, the low-temperature electronic paramagnetic resonance (EPR) spectra of oxidized TpNlr reveal at least three different species indicating structural heterogeneity in the coordination environment of the active site Fe ion. Given the likely 6-coordinate geometry of the active site Fe(3+) ion in the ferrocyanide adduct, we propose that the rhombic EPR species can serve as a model of a hexacoordinate form of the active site.

Kinetic behavior of Desulfovibrio gigas aldehyde oxidoreductase encapsulated in reverse micelles, Andrade, S. L., Brondino C. D., Kamenskaya E. O., Levashov A. V., and Moura J. J. , Biochem Biophys Res Commun, Aug 15, Volume 308, Number 1, p.73-8, (2003) AbstractWebsite

We report the kinetic behavior of the enzyme aldehyde oxidoreductase (AOR) from the sulfate reducing bacterium Desulfovibrio gigas (Dg) encapsulated in reverse micelles of sodium bis-(2-ethylhexyl) sulfosuccinate in isooctane using benzaldehyde, octaldehyde, and decylaldehyde as substrates. Dg AOR is a 200-kDa homodimeric protein that catalyzes the conversion of aldehydes to carboxylic acids. Ultrasedimentation analysis of Dg AOR-containing micelles showed the presence of 100-kDa molecular weight species, confirming that the Dg AOR subunits can be dissociated. UV-visible spectra of encapsulated Dg AOR are indistinguishable from the enzyme spectrum in solution, suggesting that both protein fold and metal cofactor are kept intact upon encapsulation. The catalytic constant (k(cat)) profile as a function of the micelle size W(0) (W(0)=[H(2)O]/[AOT]) using benzaldehyde as substrate showed two bell-shaped activity peaks at W(0)=20 and 26. Furthermore, enzymatic activity for octaldehyde and decylaldehyde was detected only in reverse micelles. Like for the benzaldehyde kinetics, two peaks with both similar k(cat) values and W(0) positions were obtained. EPR studies using spin-labeled reverse micelles indicated that octaldehyde and benzaldehyde are intercalated in the micelle membrane. This suggests that, though Dg AOR is found in the cytoplasm of bacterial cells, the enzyme may catalyze the reaction of substrates incorporated into a cell membrane.

Crystallization and preliminary X-ray diffraction analysis of the di-haem cytochrome c peroxidase from Pseudomonas stutzeri, Bonifácio, Cecília, Cunha Carlos A., Müller Axel, Timóteo Cristina G., Dias João M., Moura Isabel, and Romão Maria João , Acta Crystallographica Section D, Volume 59, Number 2, p.345-347, (2003) AbstractWebsite
n/a
2002
Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Raaijmakers, H., Macieira S., Dias J. M., Teixeira S., Bursakov S., Huber R., Moura J. J., Moura I., and Romao M. J. , Structure, Sep, Volume 10, Number 9, p.1261-72, (2002) AbstractWebsite

Desulfovibrio gigas formate dehydrogenase is the first representative of a tungsten-containing enzyme from a mesophile that has been structurally characterized. It is a heterodimer of 110 and 24 kDa subunits. The large subunit, homologous to E. coli FDH-H and to D. desulfuricans nitrate reductase, harbors the W site and one [4Fe-4S] center. No small subunit ortholog containing three [4Fe-4S] clusters has been reported. The structural homology with E. coli FDH-H shows that the essential residues (SeCys158, His159, and Arg407) at the active site are conserved. The active site is accessible via a positively charged tunnel, while product release may be facilitated, for H(+) by buried waters and protonable amino acids and for CO(2) through a hydrophobic channel.

Membrane structural changes support the involvement of mitochondria in the bile salt-induced apoptosis of rat hepatocytes, Sola, S., Brito M. A., Brites D., Moura J. J. G., and Rodrigues C. M. P. , Clinical Science, Nov, Volume 103, Number 5, p.475-485, (2002) AbstractWebsite

The accumulation of toxic bile salts within the hepatocyte plays a key role in organ injury during liver disease. Deoxycholate (DC) and glycochenodeoxycholate (GCDC) induce apoptosis in vitro and in vivo, perhaps through direct perturbation of mitochondrial membrane structure and function. In contrast, ursodeoxycholate (UDC) and its taurine-conjugated form (TUDC) appear to be protective. We show here that hydrophobic bile salts induced apoptosis in cultured rat hepatocytes, without modulating the expression of pro-apoptotic Bax protein, and caused cytochrome c release in isolated mitochondria. Co-incubation with UDC and TUDC prevented cell death and efflux of mitochondrial factors. Using spin-labelling techniques and EPR spectroscopy analysis of isolated rat liver mitochondria, we found significant structural changes at the membrane-water surface in mitochondria exposed to hydrophobic bile salts, including modified lipid polarity and fluidity, altered protein order and increased oxidative injury. UDC, TUDC and cyclosporin A almost completely abrogated DC- and GCDC-induced membrane perturbations. We conclude that the toxicity of hydrophobic bile salts to hepatocytes is mediated by cytochrome c release, through a mechanism associated with marked direct effects on mitochondrial membrane lipid polarity and fluidity, protein order and redox status, without modulation of pro-apoptotic Bax expression. UDC and TUDC can directly suppress disruption of mitochondrial membrane structure, which may represent an important mechanism of hepatoprotection by these bile salts.

Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria, Rodrigues, C. M., Sola S., Brito M. A., Brites D., and Moura J. J. , J Hepatol, Mar, Volume 36, Number 3, p.335-41, (2002) AbstractWebsite

BACKGROUND/AIMS: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. METHODS: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. RESULTS: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P<0.01), as well as disrupted protein mobility (P<0.001). Consistent with increased permeability, cytochrome c was released from the intermembrane space (P<0.01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P<0.01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. CONCLUSIONS: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.

Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis, Rodrigues, C. M., Sola S., Castro R. E., Laires P. A., Brites D., and Moura J. J. , J Lipid Res, Jun, Volume 43, Number 6, p.885-94, (2002) AbstractWebsite

Increased levels of unconjugated bilirubin, the end product of heme catabolism, impair crucial aspects of nerve cell function. In previous studies, we demonstrated that bilirubin toxicity may be due to cell death by apoptosis. To characterize the sequence of events leading to neurotoxicity, we exposed developing rat brain astrocytes and neurons to unconjugated bilirubin and investigated whether changes in membrane dynamic properties can mediate apoptosis. Bilirubin induced a rapid, dose-dependent increase in apoptosis, which was nevertheless preceded by impaired mitochondrial metabolism. Using spin labels and electron paramagnetic resonance spectroscopy analysis of whole cell and isolated mitochondrial membranes exposed to bilirubin, we detected major membrane perturbation. By physically interacting with cell membranes, bilirubin induced an almost immediate increase in lipid polarity sensed at a superficial level. The enhanced membrane permeability coincided with an increase in lipid fluidity and protein mobility and was associated with significant oxidative injury to membrane lipids. In conclusion, apoptosis of nerve cells induced by bilirubin is mediated by its primary effect at physically perturbing the cell membrane. Bilirubin directly interacts with membranes influencing lipid polarity and fluidity, protein order, and redox status. These data suggest that nerve cell membranes are primary targets of bilirubin toxicity.

17O ENDOR detection of a solvent-derived Ni-(OH(x))-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas, Carepo, M., Tierney D. L., Brondino C. D., Yang T. C., Pamplona A., Telser J., Moura I., Moura J. J., and Hoffman B. M. , J Am Chem Soc, Jan 16, Volume 124, Number 2, p.281-6, (2002) AbstractWebsite

Crystallographic studies of the hydrogenases (Hases) from Desulfovibrio gigas (Dg) and Desulfovibrio vulgaris Miyazaki (DvM) have revealed heterodinuclear nickel-iron active centers in both enzymes. The structures, which represent the as-isolated (unready) Ni-A (S = (1)/(2)) enzyme state, disclose a nonprotein ligand (labeled as X) bridging the two metals. The bridging atom was suggested to be an oxygenic (O(2)(-) or OH(-)) species in Dg Hase and an inorganic sulfide in DvM Hase. To determine the nature and chemical characteristics of the Ni-X-Fe bridging ligand in Dg Hase, we have performed 35 GHz CW (17)O ENDOR measurements on the Ni-A form of the enzyme, exchanged into H(2)(17)O, on the active Ni-C (S = (1)/(2)) form prepared by H(2)-reduction of Ni-A in H(2)(17)O, and also on Ni-A formed by reoxidation of Ni-C in H(2)(17)O. In the native state of the protein (Ni-A), the bridging ligand does not exchange with the H(2)(17)O solvent. However, after a reduction/reoxidation cycle (Ni-A --> Ni-C --> Ni-A), an (17)O label is introduced at the active site, as seen by ENDOR. Detailed analysis of a 2-D field-frequency plot of ENDOR spectra taken across the EPR envelope of Ni-A((17)O) shows that the incorporated (17)O has a roughly axial hyperfine tensor, A((17)O) approximately [5, 7, 20] MHz, discloses its orientation relative to the g tensor, and also yields an estimate of the quadrupole tensor. The substantial isotropic component (a(iso)((17)O) approximately 11 MHz) of the hyperfine interaction indicates that a solvent-derived (17)O is indeed a ligand to Ni and thus that the bridging ligand X in the Ni-A state of Dg Hase is indeed an oxygenic (O(2)(-) or OH(-)) species; comparison with earlier EPR results by others indicates that the same holds for Ni-B. The small (57)Fe hyperfine coupling seen previously for Ni-A (A((57)Fe) approximately 0.9 MHz) is now shown to persist in Ni-C, A((57)Fe) approximately 0.8 MHz. However, the (17)O signal is lost upon reductive activation to the Ni-C state; reoxidation to Ni-A leads to the reappearance of the signal. Consideration of the electronic structure of the EPR-active states of the dinuclear center leads us to suggest that the oxygenic bridge in Ni-A(B) is lost in Ni-C and is re-formed from solvent upon reoxidation to Ni-A. This implies that the reductive activation to Ni-C opens Ni/Fe coordination sites which may play a central role in the enzyme's activity.

Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313)--comparative study with D. vulgaris and D. gigas species, Carepo, M., Baptista J. F., Pamplona A., Fauque G., Moura J. J., and Reis M. A. , Anaerobe, Dec, Volume 8, Number 6, p.325-32, (2002) AbstractWebsite

This article aims to study hydrogen production/consumption in Desulfovibrio (D.) desulfuricans strain New Jersey, a sulfate reducer isolated from a medium undergoing active biocorrosion and to compare its hydrogen metabolism with two other Desulfovibrio species, D. gigas and D. vulgaris Hildenborough. Hydrogen production was followed during the growth of these three bacterial species under different growth conditions: no limitation of sulfate and lactate, sulfate limitation, lactate limitation, pyruvate/sulfate medium and in the presence of molybdate. Hydrogen production/consumption by D. desulfuricans shows a behavior similar to that of D. gigas but a different one from that of D. vulgaris, which produces higher quantities of hydrogen on lactate/sulfate medium. The three species are able to increase the hydrogen production when the sulfate became limiting. Moreover, in a pyruvate/sulfate medium hydrogen production was lower than on lactate/sulfate medium. Hydrogen production by D. desulfuricans in presence of molybdate is extremely high. Hydrogenases are key enzymes on production/consumption of hydrogen in sulfate reducing organisms. The specific activity, number and cellular localization of hydrogenases vary within the three Desulfovibrio species used in this work, which could explain the differences observed on hydrogen utilization.