Publications

Export 23 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Bonnet A, Grosso AR, Elkaoutari A, Coleno E, Presle A, Sridhara SC, Janbon G, Geli V, de Almeida SF, Palancade B. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability. Molecular Cell. 2017:1-14. AbstractURL

Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage.

Mancio-Silva L, Slavic K, Ruivo MG, Grosso AR, Modrzynska KK, Vera IM, Sales-dias J, Gomes AR, Macpherson CR, Crozet P, Adamo M, Baena-gonzalez E, Tewari R, Llinás M, Billker O, Mota MM. Nutrient sensing modulates malaria parasite virulence. Nature. 2017. AbstractURL

The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.

Sridhara SC, Carvalho S, Grosso AR, Marcela L, Carmo-fonseca M, de Almeida SF. Transcription Dynamics Prevent RNA-Mediated Genomic Instability through SRPK2-Dependent DDX23 Phohsphorylation. Cell Reports. 2017:334-43. AbstractURL

Genomic instability is frequently caused by nucleic acid structures termed R-loops that are formed during transcription. Despite their harmful potential, mechanisms that sense, signal, and suppress these structures remain elusive. Here, we report that oscillations in transcription dynamics are a major sensor of R-loops. We show that pausing of RNA polymerase II (RNA Pol II) initiates a signaling cascade whereby the serine/arginine protein kinase 2 (SRPK2) phosphorylates the DDX23 helicase, culminating in the suppression of R-loops. We show that in the absence of either SRPK2 or DDX23, accumulation of R-loops leads to massive genomic instability revealed by high levels of DNA double-strand breaks (DSBs). Importantly, we found DDX23 mutations in several cancers and detected homozygous deletions of the entire DDX23 locus in 10 (17%) adenoid cystic carcinoma (ACC) samples. Our results unravel molecular details of a link between transcription dynamics and RNA-mediated genomic instability that may play important roles in cancer development.

2016
Posa I, Carvalho S, Tavares J, Grosso AR. A pan-cancer analysis of MYC-PVT1 reveals CNV-unmediated deregulation and poor prognosis in renal carcinoma. Oncotarget. 2016. AbstractURL

The PVT1 lncRNA has recently been involved in tumorigenesis by affecting the protein stability of the MYC proto-oncogene. Both MYC and PVT1 reside in a well-known cancer-risk locus and enhanced levels of their products have been reported in different human cancers. Nonetheless, the extension and relevance of the MYC-PVT1 deregulation in tumorigenesis has not yet been systematically addressed.Here we performed a pan-cancer analysis of matched copy number, transcriptomic, methylation, proteomic and clinicopathological profiles for almost 7000 patients from 17 different cancers represented in the TCGA cohorts. Among all cancers types, kidney renal clear cell carcinoma (KIRC) showed the strongest upregulation of PVT1 and increased levels of both MYC and PVT1 correlated with the clinical outcome. PVT1 misregulation in KIRC is mostly associated to promoter hypomethylation rather than locus amplification. Furthermore, we found an association between MYC levels and PVT1 expression, which impacted on MYC-target genes.Collectively, our study discloses the role of PVT1 as a novel prognostic factor and as a molecular target for novel therapeutic interventions in renal carcinoma.

Muñoz-ruiz M, Ribot JC, Grosso AR, Gonçalves-sousa N, Pamplona A, Pennington DJ, Regueiro JR, Fernández-malavé E, Silva-santos B. TCR signal strength controls thymic differentiation of discrete proinflammatory γδT cell subsets. Nature immunology. 2016. AbstractURL

The mouse thymus produces discrete γδ T cell subsets that make either interferon-γ (IFN-γ) or interleukin 17 (IL-17), but the role of the T cell antigen receptor (TCR) in this developmental process remains controversial. Here we show that Cd3g(+/-) Cd3d(+/-) (CD3 double-haploinsufficient (CD3DH)) mice have reduced TCR expression and signaling strength on γδ T cells. CD3DH mice had normal numbers and phenotypes of αβ thymocyte subsets, but impaired differentiation of fetal Vγ6(+) (but not Vγ4(+)) IL-17-producing γδ T cells and a marked depletion of IFN-γ-producing CD122(+) NK1.1(+) γδ T cells throughout ontogeny. Adult CD3DH mice showed reduced peripheral IFN-γ(+) γδ T cells and were resistant to experimental cerebral malaria. Thus, TCR signal strength within specific thymic developmental windows is a major determinant of the generation of proinflammatory γδ T cell subsets and their impact on pathophysiology.

Jesus T , Grosso AR, Almeida-Val VM, Coelho MM. Transcriptome profiling of two Iberian freshwater fish exposed to thermal stress. Journal of Thermal Biology. 2016;55:54-61. AbstractURL

The congeneric freshwater fish Squalius carolitertii and S. torgalensis inhabit different Iberian regions with distinct climates; Atlantic in the North and Mediterranean in the South, respectively. While northern regions present mild temperatures, fish in southern regions often experience harsh temperatures and droughts. Previous work with two hsp70 genes suggested that S. torgalensis is better adapted to harsher thermal conditions than S. carolitertii as a result of the different environmental conditions. We present a transcriptomic characterisation of these species' thermal stress responses. Through differential gene expression analysis of the recently available transcriptomes of these two endemic fish species, comprising 12 RNA-seq libraries from three tissues (skeletal muscle, liver and fins) of fish exposed to control (18 °C) and test (30 °C) conditions, we intend to lay the foundations for further studies on the effects of temperature given predicted climate changes. Results showed that S. carolitertii had more upregulated genes, many of which are involved in transcription regulation, whereas S. torgalensis had more downregulated genes, particularly those responsible for cell division and growth. However, both species displayed increased gene expression of many hsps genes, suggesting that they are able to deal with protein damage caused by heat, though with a greater response in S. torgalensis. Together, our results suggest that S. torgalensis may have an energy saving strategy during short periods of high temperatures, re-allocating resources from growth to stress response mechanisms. In contrast, S. carolitertii regulates its metabolism by increasing the expression of genes involved in transcription and promoting the stress response, probably to maintain homoeostasis. Additionally, we indicate a set of potential target genes for further studies that may be particularly suited to monitoring the responses of Cyprinidae to changing temperatures, particularly for species living in similar conditions in the Mediterranean Peninsulas.

2015
Nojima T, Gomes T, Grosso AR, Kimura H, Dye M , Dhir S, Carmo-fonseca M, Proudfoot N . Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell. 2015;161:526-40. AbstractURL

Transcription is a highly dynamic process. Consequently, we have developed native elongating transcript sequencing technology for mammalian chromatin (mNET-seq), which generates single-nucleotide resolution, nascent transcription profiles. Nascent RNA was detected in the active site of RNA polymerase II (Pol II) along with associated RNA processing intermediates. In particular, we detected 5'splice site cleavage by the spliceosome, showing that cleaved upstream exon transcripts are associated with Pol II CTD phosphorylated on the serine 5 position (S5P), which is accumulated over downstream exons. Also, depletion of termination factors substantially reduces Pol II pausing at gene ends, leading to termination defects. Notably, termination factors play an additional promoter role by restricting non-productive RNA synthesis in a Pol II CTD S2P-specific manner. Our results suggest that CTD phosphorylation patterns established for yeast transcription are significantly different in mammals. Taken together, mNET-seq provides dynamic and detailed snapshots of the complex events underlying transcription in mammals.

Veigas B, Pedrosa P, Carlos FF, Mancio-Silva L, Grosso AR, Fortunato E, Mota MM, Baptista PV. One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care. Journal of Nanobiotechnology. 2015;13:48. AbstractURL

BACKGROUND:
Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may also been used for parallel detection of several targets to provide additional information on diagnostics of pathogens.
RESULTS:
For the first time, we demonstrate that a single Au-nanoprobe may provide for detection of two distinct targets (pathogens) allowing colorimetric multi-target detection. We demonstrate this concept by using one single gold-nanoprobe capable to detect members of the Mycobacterium tuberculosis complex and Plasmodium sp., the etiologic agents of tuberculosis and malaria, respectively. Following characterisation, the developed gold-nanoprobe allowed detection of either target in individual samples or in samples containing both DNA species with the same efficacy.
CONCLUSIONS:
Using one single probe via the non-cross-linking colorimetric methodology it is possible to identify multiple targets in one sample in one reaction. This proof-of-concept approach may easily be integrated into sensing platforms allowing for fast and simple multiplexing of Au-nanoprobe based detection at point-of-need.

Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vítor AC, Desterro JM, Carmo-fonseca M, de Almeida SF. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. eLife. 2015;4:e09214. AbstractURL

Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer.

2014
Dourado CG, Duarte MA, Grosso AR, Bastos-Silveira C, Marrero P, Oliveira P, Paulo OS, Dias D. Phylogenetic origin of the endemic pigeons from Madeira (Columba trocaz) and Azores Islands (Columba palumbus azorica). Journal of Ornithology. 2014;155:71-82. Abstract

This study addresses for the first time the issue of pigeon (genus Columba) phylogeny within the archipelagos of Madeira ( Columba trocaz) and Azores ( C. palumbus azorica), located in the singular biogeographic area of Macaronesia. The phylogeny of these endemic pigeons was inferred based on mitochondrial (cytochrome b and cytochrome c oxidase I) and nuclear ($\beta$-fibrinogen intron 7) genetic markers through multiple approaches. Despite the non-monophyletic pattern for the insular endemic species recovered in the phylogenies, topology tests presented somewhat different results. C. trocaz, the Madeiran endemic species, clustered strongly with the Canarian endemic C. bollii, and these two are thus more closely related to each other than C. bollii to C. junoniae, the other endemic species of Canary Islands, which seems to have diverged independently. Moreover, C. trocaz was found to be phylogenetically closer to C. bollii than to C. palumbus from mainland Europe and Azores Islands. No genetic differentiation was found between the continental C. p. palumbus and the endemic C. p. azorica, which suggests a relatively recent colonisation event of the Azores Islands. (English) [ABSTRACT FROM AUTHOR]

2013
Schmolka N, Serre K, Grosso AR, Rei M, Pennington DJ, Gomes AQ, Silva-santos B. Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory γδT cell subsets. Nature immunology. 2013;14:1093-100. AbstractURL

Two distinct subsets of γδ T cells that produce interleukin 17 (IL-17) (CD27(-) γδ T cells) or interferon-γ (IFN-γ) (CD27(+) γδ T cells) develop in the mouse thymus, but the molecular determinants of their functional potential in the periphery remain unknown. Here we conducted a genome-wide characterization of the methylation patterns of histone H3, along with analysis of mRNA encoding transcription factors, to identify the regulatory networks of peripheral IFN-γ-producing or IL-17-producing γδ T cell subsets in vivo. We found that CD27(+) γδ T cells were committed to the expression of Ifng but not Il17, whereas CD27(-) γδ T cells displayed permissive chromatin configurations at loci encoding both cytokines and their regulatory transcription factors and differentiated into cells that produced both IL-17 and IFN-γ in a tumor microenvironment.

Rodrigues R, Grosso AR, Moita L. Genome-wide analysis of alternative splicing during dendritic cell response to a bacterial challenge. PloS one. 2013;8:e61975. AbstractURL

The immune system relies on the plasticity of its components to produce appropriate responses to frequent environmental challenges. Dendritic cells (DCs) are critical initiators of innate immunity and orchestrate the later and more specific adaptive immunity. The generation of diversity in transcriptional programs is central for effective immune responses. Alternative splicing is widely considered a key generator of transcriptional and proteomic complexity, but its role has been rarely addressed systematically in immune cells. Here we used splicing-sensitive arrays to assess genome-wide gene- and exon-level expression profiles in human DCs in response to a bacterial challenge. We find widespread alternative splicing events and splicing factor transcriptional signatures induced by an E. coli challenge to human DCs. Alternative splicing acts in concert with transcriptional modulation, but these two mechanisms of gene regulation affect primarily distinct functional gene groups. Alternative splicing is likely to have an important role in DC immunobiology because it affects genes known to be involved in DC development, endocytosis, antigen presentation and cell cycle arrest.

Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-fonseca M, de Almeida SF. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic acids research. 2013;41:2881-93. AbstractURL

Histone H3 of nucleosomes positioned on active genes is trimethylated at Lys36 (H3K36me3) by the SETD2 (also termed KMT3A/SET2 or HYPB) methyltransferase. Previous studies in yeast indicated that H3K36me3 prevents spurious intragenic transcription initiation through recruitment of a histone deacetylase complex, a mechanism that is not conserved in mammals. Here, we report that downregulation of SETD2 in human cells leads to intragenic transcription initiation in at least 11% of active genes. Reduction of SETD2 prevents normal loading of the FACT (FAcilitates Chromatin Transcription) complex subunits SPT16 and SSRP1, and decreases nucleosome occupancy in active genes. Moreover, co-immunoprecipitation experiments suggest that SPT16 is recruited to active chromatin templates, which contain H3K36me3-modified nucleosomes. Our results further show that within minutes after transcriptional activation, there is a SETD2-dependent reduction in gene body occupancy of histone H2B, but not of histone H3, suggesting that SETD2 coordinates FACT-mediated exchange of histone H2B during transcription-coupled nucleosome displacement. After inhibition of transcription, we observe a SETD2-dependent recruitment of FACT and increased histone H2B occupancy. These data suggest that SETD2 activity modulates FACT recruitment and nucleosome dynamics, thereby repressing cryptic transcription initiation.

Lanca T, Costa MF, Goncalves-Sousa N, Rei M, Grosso AR, Penido C, Silva-Santos B. Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic γδ T lymphocytes to tumor beds. J Immunol. 2013;190:6673-80. AbstractURL

Tumor-infiltrating lymphocytes (TILs) are important prognostic factors in cancer progression and key players in cancer immunotherapy. Although γδ T lymphocytes can target a diversity of tumor cell types, their clinical manipulation is hampered by our limited knowledge of the molecular cues that determine γδ T cell migration toward tumors in vivo. In this study we set out to identify the chemotactic signals that orchestrate tumor infiltration by γδ T cells. We have used the preclinical transplantable B16 melanoma model to profile chemokines in tumor lesions and assess their impact on γδ TIL recruitment in vivo. We show that the inflammatory chemokine CCL2 and its receptor CCR2 are necessary for the accumulation of γδ TILs in B16 lesions, where they produce IFN-γ and display potent cytotoxic functions. Moreover, CCL2 directed γδ T cell migration in vitro toward tumor extracts, which was abrogated by anti-CCL2 neutralizing Abs. Strikingly, the lack of γδ TILs in TCRδ-deficient but also in CCR2-deficient mice enhanced tumor growth in vivo, thus revealing an unanticipated protective role for CCR2/CCL2 through the recruitment of γδ T cells. Importantly, we demonstrate that human Vδ1 T cells, but not their Vδ2 counterparts, express CCR2 and migrate to CCL2, whose expression is strongly deregulated in multiple human tumors of diverse origin, such as lung, prostate, liver, or breast cancer. This work identifies a novel protective role for CCL2/CCR2 in the tumor microenvironment, while opening new perspectives for modulation of human Vδ1 T cells in cancer immunotherapy.

2012
Grosso AR, {De Almeida} SF, Braga J, Carmo-fonseca M, de Almeida SF, Braga J, Almeida FD, Carmo-fonseca M, Res G, Almeida FD, Grosso AR, Carmo-fonseca M. Dynamic transitions in RNA polymerase II density profiles during transcription termination. Genome research. 2012;22:1447-56. AbstractURL

Eukaryotic protein-coding genes are transcribed by RNA polymerase II (RNAPII) through a cycle composed of three main phases: initiation, elongation, and termination. Recent studies using chromatin immunoprecipitation coupled to high-throughput sequencing suggest that the density of RNAPII molecules is higher at the 3'-end relative to the gene body. Here we show that this view is biased due to averaging density profiles for "metagene" analysis. Indeed, the majority of genes exhibit little, if any, detectable accumulation of polymerases during transcription termination. Compared with genes with no enrichment, genes that accumulate RNAPII at the 3'-end are shorter, more frequently contain the canonical polyadenylation [poly(A)] signal AATAAA and G-rich motifs in the downstream sequence element, and have higher levels of expression. In 1% to 4% of actively transcribing genes, the RNAPII enriched at the 3'-end is phosphorylated on Ser5, and we provide evidence suggesting that these genes have their promoter and terminator regions juxtaposed. We also found a striking correlation between RNAPII accumulation and nucleosome organization, suggesting that the presence of nucleosomes after the poly(A) site induces pausing of polymerases, leading to their accumulation. Yet we further observe that nucleosome occupancy at the 3'-end of genes is dynamic and correlates with RNAPII density. Taken together, our results provide novel insight to transcription termination, a fundamental process that remains one of the least understood stages of the transcription cycle.

2011
de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, Andrade J, Levezinho H, Gut M, Eick D, Gut I, Andrau J-, Ferrier P, Carmo-fonseca M. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nature structural & molecular biology. 2011;18:977-83. AbstractURL

Several lines of recent evidence support a role for chromatin in splicing regulation. Here, we show that splicing can also contribute to histone modification, which implies bidirectional communication between epigenetic mechanisms and RNA processing. Genome-wide analysis of histone methylation in human cell lines and mouse primary T cells reveals that intron-containing genes are preferentially marked with histone H3 Lys36 trimethylation (H3K36me3) relative to intronless genes. In intron-containing genes, H3K36me3 marking is proportional to transcriptional activity, whereas in intronless genes, H3K36me3 is always detected at much lower levels. Furthermore, splicing inhibition impairs recruitment of H3K36 methyltransferase HYPB (also known as Setd2) and reduces H3K36me3, whereas splicing activation has the opposite effect. Moreover, the increase of H3K36me3 correlates with the length of the first intron, consistent with the view that splicing enhances H3 methylation. We propose that splicing is mechanistically coupled to recruitment of HYPB/Setd2 to elongating RNA polymerase II.

2010
Gomes AQ, Correia DV, Grosso AR, Lança T, Ferreira C, Lacerda JF, Barata JT, da Silva MG, Silva-santos B. Identification of a panel of ten cell surface protein antigens associated with immunotargeting of leukemias and lymphomas by peripheral blood γδT cells. Haematologica. 2010;95:1397-404. AbstractURL

BACKGROUND:
Vgamma9Vdelta2 T lymphocytes are regarded as promising mediators of cancer immunotherapy due to their capacity to eliminate multiple experimental tumors, particularly within those of hematopoietic origin. However, Vgamma9Vdelta2 T-cell based lymphoma clinical trials have suffered from the lack of biomarkers that can be used as prognostic of therapeutic success.
DESIGN AND METHODS:
We have conducted a comprehensive study of gene expression in acute lymphoblastic leukemias and non-Hodgkin's lymphomas, aimed at identifying markers of susceptibility versus resistance to Vgamma9Vdelta2 T cell-mediated cytotoxicity. We employed cDNA microarrays and quantitative real-time PCR to screen 20 leukemia and lymphoma cell lines, and 23 primary hematopoietic tumor samples. These data were analyzed using state-of-the-art bioinformatics, and gene expression patterns were correlated with susceptibility to Vgamma9Vdelta2 T cell mediated cytolysis in vitro.
RESULTS:
We identified a panel of 10 genes encoding cell surface proteins that were statistically differentially expressed between "gammadelta-susceptible" and "gammadelta-resistant" hematopoietic tumors. Within this panel, 3 genes (ULBP1, TFR2 and IFITM1) were associated with increased susceptibility to Vgamma9Vdelta2 T-cell cytotoxicity, whereas the other 7 (CLEC2D, NRP2, SELL, PKD2, KCNK12, ITGA6 and SLAMF1) were enriched in resistant tumors. Furthermore, some of these candidates displayed a striking variance of expression among primary follicular lymphomas and T-cell acute lymphoblastic leukemias.
CONCLUSIONS:
Our results suggest that hematopoietic tumors display a highly variable repertoire of surface proteins that can impact on Vgamma9Vdelta2 cell-mediated immunotargeting. The prognostic value of the proposed markers can now be evaluated in upcoming Vgamma9Vdelta2 T cell-based lymphoma/leukemia clinical trials.

Mollet IG, Ben-Dov C, Felício-Silva D, Grosso AR, Eleutério P, Alves R, Staller R, Silva TS, Carmo-fonseca M. Unconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome. Nucleic Acids Research. 2010;38:4740-54. AbstractURL

Mining massive amounts of transcript data for alternative splicing information is paramount to help understand how the maturation of RNA regulates gene expression. We developed an algorithm to cluster transcript data to annotated genes to detect unannotated splice variants. A higher number of alternatively spliced genes and isoforms were found compared to other alternative splicing databases. Comparison of human and mouse data revealed a marked increase, in human, of splice variants incorporating novel exons and retained introns. Previously unannotated exons were validated by tiling array expression data and shown to correspond preferentially to novel first exons. Retained introns were validated by tiling array and deep sequencing data. The majority of retained introns were shorter than 500 nt and had weak polypyrimidine tracts. A subset of retained introns matching small RNAs and displaying a high GC content suggests a possible coordination between splicing regulation and production of noncoding RNAs. Conservation of unannotated exons and retained introns was higher in horse, dog and cow than in rodents, and 64% of exon sequences were only found in primates. This analysis highlights previously bypassed alternative splice variants, which may be crucial to deciphering more complex pathways of gene regulation in human.

2009
Correia DV, D'Orey F, Cardoso BA, Lança T, Grosso AR, DeBarros A, Martins LR, Barata JT, Silva-santos B. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells. PloS one. 2009;4:e5657. AbstractURL

BACKGROUND:
The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR)-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties.
METHODOLOGY/PRINCIPAL FINDINGS:
We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+) T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+) TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice,
CONCLUSIONS/SIGNIFICANCE:
The development of efficient cancer immunotherapy strategies critically depends on our capacity to maximize anti-tumor effector T-cell responses. By characterizing the intracellular mechanisms of HMB-PP-mediated activation of the highly cytotoxic Vgamma9(+) T-cell subset, our data strongly support the usage of this microbial antigen in novel cancer clinical trials.

Albuquerque SS, Carret C, Grosso AR, Tarun AS, Peng X, Kappe SH, Prudêncio M, Mota MM. Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genomics. 2009;10:270. AbstractURL

BACKGROUND:
Plasmodium sporozoites migrate to the liver where they traverse several hepatocytes before invading the one inside which they will develop and multiply into thousands of merozoites. Although this constitutes an essential step of malaria infection, the requirements of Plasmodium parasites in liver cells and how they use the host cell for their own survival and development are poorly understood.
RESULTS:
To gain new insights into the molecular host-parasite interactions that take place during malaria liver infection, we have used high-throughput microarray technology to determine the transcriptional profile of P. berghei-infected hepatoma cells. The data analysis shows differential expression patterns for 1064 host genes starting at 6 h and up to 24 h post infection, with the largest proportion correlating specifically with the early stages of the infection process. A considerable proportion of those genes were also found to be modulated in liver cells collected from P. yoelii-infected mice 24 and 40 h after infection, strengthening the data obtained with the in vitro model and highlighting genes and pathways involved in the host response to rodent Plasmodium parasites.
CONCLUSION:
Our data reveal that host cell infection by Plasmodium sporozoites leads to a coordinated and sequential set of biological events, ranging from the initial stage of stress response up to the engagement of host metabolic processes and the maintenance of cell viability throughout infection.

2008
Abrantes P, Dimopoulos G, Grosso AR, do Rosário VE, Silveira H. Chloroquine mediated modulation of Anopheles gambiae gene expression. PloS one. 2008;3:e2587. AbstractURL

BACKGROUND:
Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection.
METHODOLOGY/PRINCIPAL FINDINGS:
In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes.
CONCLUSIONS/SIGNIFICANCE:
The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.

Grosso AR, Martins S, Carmo-fonseca M. The emerging role of splicing factors in cancer. EMBO Rep. 2008;9:1087-93. AbstractURL

Recent progress in global sequence and microarray data analysis has revealed the increasing complexity of the human transcriptome. Alternative splicing generates a huge diversity of transcript variants and disruption of splicing regulatory networks is emerging as an important contributor to various diseases, including cancer. Current efforts to establish the dynamic repertoire of transcripts that are generated in health and disease are showing that many cancer-associated alternative-splicing events occur in the absence of mutations in the affected genes. A growing body of evidence reveals changes in splicing-factor expression that correlate with cancer development, progression and response to therapy. Here, we discuss how recent links between cancer and altered expression of proteins implicated in splicing regulation are bringing the splicing machinery to the fore as a potential target for anticancer treatment.

Grosso AR, Gomes AQ, Barbosa-Morais NL, Caldeira S, Thorne NP, Grech G, von Lindern M, Carmo-fonseca M. Tissue-specific splicing factor gene expression signatures. Nucl. Acids Res.. 2008;36:4823-32. AbstractURL

The alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently started to become available. Here we show that splicing factor gene expression signatures can be identified that reflect cell type and tissue-specific patterns of alternative splicing. We used a computational approach to analyze microarray-based gene expression profiles of splicing factors from mouse, chimpanzee and human tissues. Our results show that brain and testis, the two tissues with highest levels of alternative splicing events, have the largest number of splicing factor genes that are most highly differentially expressed. We further identified SR protein kinases and small nuclear ribonucleoprotein particle (snRNP) proteins among the splicing factor genes that are most highly differentially expressed in a particular tissue. These results indicate the power of generating signature-based predictions as an initial computational approach into a global view of tissue-specific alternative splicing regulation.