Publications

Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Sanchez-Sobrado, O, et al.  2017.  Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping. J. Mater. Chem. C. 5:6852-6861.
Torrisi, G, Luis JS, Sanchez-Sobrado O, Raciti R, Mendes MJ, Águas H, Fortunato E, Martins R, Terrasi A.  2019.  Colloidal-structured metallic micro-grids: High performance transparent electrodes in the red and infrared range. Solar Energy Materials and Solar Cells. 197:7-12. AbstractWebsite

One of the most promising approaches to produce industrial-compatible Transparent Conducting Materials (TCMs) with excellent characteristics is the fabrication of TCO/metal/TCO multilayers. In this article, we report on the electro-optical properties of a novel high-performing TCO/metal/TCO structure in which the intra-layer is a micro-structured metallic grid instead of a continuous thin film. The grid is obtained by evaporation of Ag through a mask of polystyrene colloidal micro-spheres deposited by the Langmuir-Blodgett method and partially dry-etched in plasma. IZO/Ag grid/IZO structures with different thicknesses and mesh dimensions have been fabricated, exhibiting excellent electrical characteristics (sheet resistance below 10 Ω/□) and particularly high optical transmittance in the near-infrared spectral region as compared to planar (unstructured) TCM multilayers. Numerical simulations were also used to highlight the role of the Ag mesh parameters on the electrical properties.