Publications

Export 10 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Esteves, C, Palma SICJ, Costa HMA, Alves C, Santos GMC, Ramou E, Carvalho AL, Alves V, Roque ACA.  2022.  Tackling Humidity with Designer Ionic Liquid-Based Gas Sensing Soft Materials. Advanced Materials. 34:2107205., Number 8 AbstractWebsite

Abstract Relative humidity is simultaneously a sensing target and a contaminant in gas and volatile organic compound (VOC) sensing systems, where strategies to control humidity interference are required. An unmet challenge is the creation of gas-sensitive materials where the response to humidity is controlled by the material itself. Here, humidity effects are controlled through the design of gelatin formulations in ionic liquids without and with liquid crystals as electrical and optical sensors, respectively. In this design, the anions [DCA]− and [Cl]− of room temperature ionic liquids from the 1-butyl-3-methylimidazolium family tailor the response to humidity and, subsequently, sensing of VOCs in dry and humid conditions. Due to the combined effect of the materials formulations and sensing mechanisms, changing the anion from [DCA]− to the much more hygroscopic [Cl]−, leads to stronger electrical responses and much weaker optical responses to humidity. Thus, either humidity sensors or humidity-tolerant VOC sensors that do not require sample preconditioning or signal processing to correct humidity impact are obtained. With the wide spread of 3D- and 4D-printing and intelligent devices, the monitoring and tuning of humidity in sustainable biobased materials offers excellent opportunities in e-nose sensing arrays and wearable devices compatible with operation at room conditions.

Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Ribeiro, DO, Pinheiro BA, Carvalho AL, Palma AS.  2018.  Targeting protein-carbohydrate interactions in plant cell-wall biodegradation: the power of carbohydrate microarrays. Carbohydrate Chemistry: Chemical and Biological Approaches Volume 43. 43:159-176.: The Royal Society of Chemistry Abstract

The plant cell-wall is constituted by structurally diverse polysaccharides. The biodegradation of these is a crucial process for life sustainability. Cellulolytic microorganisms are highly efficient in this process by assembling modular architectures of carbohydrate-active enzymes with appended non-catalytic carbohydrate-binding modules (CBMs). Carbohydrate microarrays offer high-throughput and sensitive tools for uncovering carbohydrate-binding specificities of CBMs{,} which is pivotal to understand the function of these modules in polysaccharide biodegradation mechanisms. Features of this technology will be here briefly reviewed with highlights of microarray approaches to study plant-carbohydrates and CBM-carbohydrate interactions{,} along with an overview of plant polysaccharides and microorganisms strategies for their recognition.

Romero, A, Varela PF, Romao MJ, Sanz L, TopferPetersen E, Calvete JJ.  1997.  The three-dimensional structure of mammalian spermadhesins determined by x-ray crystallography. European Journal of Cell Biology. 74:13-13. AbstractWebsite
n/a
Santos-Silva, T, Mukhopadhyay A, Seixas JD, Bernardes GJL, Romao CC, Romao MJ.  2011.  Towards Improved Therapeutic CORMs: Understanding the Reactivity of CORM-3 with Proteins. Current Medicinal Chemistry. 18:3361-3366., Number 22 AbstractWebsite
n/a
Oliveira, AR, Mota C, Mourato C, Domingos RM, Santos MFA, Gesto D, Guigliarelli B, Santos-Silva T, Romão MJ, Pereira IAC.  2020.  Towards the mechanistic understanding of enzymatic CO2 reduction, 2020. ACS CatalysisACS Catalysis. : American Chemical Society AbstractWebsite

Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.

Vilela-Alves, G, Manuel RR, Oliveira AR, Pereira IC, Romão MJ, Mota C.  2023.  Tracking W-Formate Dehydrogenase Structural Changes During Catalysis and Enzyme Reoxidation. International Journal of Molecular Sciences. 24, Number 1 AbstractWebsite

Metal-dependent formate dehydrogenases (Fdh) catalyze the reversible conversion of CO2 to formate, with unrivalled efficiency and selectivity. However, the key catalytic aspects of these enzymes remain unknown, preventing us from fully benefiting from their capabilities in terms of biotechnological applications. Here, we report a time-resolved characterization by X-ray crystallography of the Desulfovibrio vulgaris Hildenborough SeCys/W-Fdh during formate oxidation. The results allowed us to model five different intermediate structures and to chronologically map the changes occurring during enzyme reduction. Formate molecules were assigned for the first time to populate the catalytic pocket of a Fdh. Finally, the redox reversibility of DvFdhAB in crystals was confirmed by reduction and reoxidation structural studies.

Hussain, A, Semeano ATS, Palma SICJ, Pina AS, Almeida J, Medrado BF, Pádua ACCS, Carvalho AL, Dionísio M, Li RWC, Gamboa H, Ulijn RV, Gruber J, Roque ACA.  2017.  Tunable Gas Sensing Gels by Cooperative Assembly. Advanced Functional Materials. 27:1700803–n/a., Number 27 AbstractWebsite

The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.

Raaijmakers, H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJG, Romao MJ.  2001.  Tungsten-containing formats dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography. Journal of Biological Inorganic Chemistry. 6:398-404., Number 4 AbstractWebsite
n/a
Otrelo-Cardoso, AR, Nair RR, Correia MAS, Rivas MG, Santos-Silva T.  2014.  TupA: A Tungstate Binding Protein in the Periplasm of Desulfovibrio alaskensis G20, 2014/05/29/accep. International Journal of Molecular Sciences. 15(7):11783-11798.: MDPI AbstractWebsite

The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P2(1) space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.