Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly

Citation:
Kowacz, M, Marchel M, Juknaité L, Esperança JMSS, Romão MJ, Carvalho AL, Rebelo LPN.  2017.  Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly. Journal of Crystal Growth. 457:362-368.

Abstract:

Abstract We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of İR\} light on the structuring of protein interfacial water. Our results indicate that the İR\} radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by İR\} light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of İR\} radiation may have important implications for biological and bio-inspired systems.

Notes:

SI: CRYS_ECCG5

Related External Link