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Abstract—In hybrid gels with immobilized liquid crystal 

(LC) droplets, fast and unique optical texture variations are 

generated when distinct volatile organic compounds (VOCs) 

interact with the LC and disturb its molecular order. The 

optical texture variations can be observed under a polarized 

optical microscope or transduced into a signal representing the 

variations of light transmitted through the LC. We show how 

hybrid gels can accurately identify 11 distinct VOCs by using 

deep learning to analyze optical texture variations of individual 

droplets (0.93 average F1-score) and by using machine learning 

to analyze 1D optical signals from multiple droplets in hybrid 

gels (0.88 average F1-score). 
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I. INTRODUCTION 

Liquid crystals (LC) are soft materials with able to form 
dynamic stimuli-responsive supramolecular structures. When 
LC molecules are orderly assembled, they can alter the plane 
of polarized light, allowing light transmission through the 
material and generating interference patterns and colours 
(optical textures) observable under polarized optical 
microscopy (POM). Perturbation of molecular order results 
in alterations of the optical textures and, consequently, to 
changes in the intensity of light transmitted through the 
material. This is the basis to design chemical and biological 
sensing devices [1], including gas sensors, where LC work as 
optical probes with fast and reversible responses, low energy 
demand, operation at room temperature and tunable 
selectivity [2]. In hybrid gel films, LC droplets are embedded 
in a gel-like matrix composed by gelatin and ionic liquid [3]. 
The LC molecules are anchored perpendicularly to the 
interface, resulting in a radial configuration typically 
observed in POM as a Maltese cross optical texture (Fig 1). 
In the presence of different VOCs the LC radial 
configuration is rapidly disturbed and recovered when the 
VOC is removed (less than 20 s) (Fig. 1c). VOCs with 
different chemical functionalities interact preferentially with 
different components of the gel, resulting in different optical 
textures variations within the droplets [3]–[5]. Either POM or 
the light transmittance signal (Fig. 1d) can be used to monitor 
VOC interactions with the material and, since typical texture and 
signal patterns are observed for different VOCs, artificial 
intelligence can help to automatically identify the VOC by 
learning to recognize typical features of the LC responses [4], [6], 
[7]. We present two approaches for VOC recognition using 

distinct data formats extracted from hybrid gel films upon 
exposure to 11 VOCs representative of distinct chemical 
classes. The first approach is a Convolutional Neural Network 
pattern recognition system based the video analysis of the 
optical textures of individual LC droplets [8]. The second 
approach is a Support Vector Machine (SVM) classifier 
based on morphological features of the optical signals (light 
transmittance) collected from a region of hybrid gel with 
multiple droplets Both methodologies successfully leaned to 
identify the tested VOCs, further confirming the potential of 
hybrid gels for gas sensing either at the multi-droplet level, 
or at the single droplet level. 

 

Fig. 1.  Hybrid gels and their optical response to VOCs. (a) Gel spread 

over a glass slide. (b) POM micrograph taken with crossed polarizers, of a 
gel area before VOC exposure. (c) Optical textures of a LC droplet during 

one cycle of exposure (5 s) / recovery (15 s). Scale bar corresponds to 5 

µm. (d) Optical signals of a sensing gel during 6 identical exposure (5 s) 
/recovery (15 s) cycles. 

II. MATERIALS AND METHODS 

A. Video-recordings of responses to VOCs 

Gelatin hybrid gels were prepared and spread as films 
over untreated glass slides [4] Each film was positioned 
inside a glass chamber placed in the stage of a polarising 
optical microscope (Zeiss Axio Observer. Z1/7, (Zeiss, 
Oberkochen, Germany). A VOC delivery system assembled 
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in-house was connected to the glass chamber and alternately 
pushed a VOC sample and clean air through the chamber in a 
cyclic way. To generate the VOC samples, room air was 
pumped through the headspace of a 30 mL vial containing 15 

mL of pure solvent at 37 °C leading to VOC concentration of 
12% - 15% (v/v) [4]. Each film was subjected to 5 
consecutive cycles of exposure (5 s) and recovery (15 s, with 
clean air) with one of 11 VOCs (heptane, hexane, 
chloroform, toluene, dichloromethane, diethyl ether, ethyl 
acetate, acetonitrile, acetone, ethanol, and methanol). The 
alterations in the LC order within the droplets were video 
recorded in a single region of the gel film (Fig. 1a) using the 
microscope camera. One video per VOC was generated. 

B. Video analysis  

The droplets in each video were detected using an 
implementation of YOLOv3 network available on GitHub 
(https://github.com/wizyoung/YOLOv3_TensorFlow) with 
parameters optimized for our dataset of images [8]. YOLOv3 
(You Only Look Once) is an algorithm that uses 
convolutional neural networks for object detection and 
classification [9]. The droplets were assembled in sequences, 
each of them corresponding to the textural transformations 
observed during a cycle of exposure to VOC and recovery 
with clean air. Then, a bidimensional convolutional neural 
network (2D CNN) combined with a Long Short Term 
Memory (LSTM) [10]–[12] was employed to extract features 
from the droplet sequences and perform the classification. 
The same 2D CNN is applied to every frame in the image 
sequence and extracts features that are then fed to the LSTM 
to learn time features for each sequence. The 2D CNN was 
composed by three sets of two convolutional layers (with 
ReLU activation) and a MaxPooling layer, totalling 9 layers. 
Padding was applied in the convolutional layers and there 
was a dropout layer before the final classification layer, a 11-
unit softmax activation function (for 11 VOC Classification). 
Several values were tested for the parameters of this network 
[8]. To select the hyper-parameters, a grid search was 
performed [8]. The model was trained with the ‘Adam’ 
optimizer using Categorical Crossentropy as the loss 
function. A stacking ensemble [13] was used to aggregate the 
predictions made over the same data by 12 different base 
models of 2D CNN+LSTM corresponding to the total 
number of combinations of different hyper-parameter values 
(Table I). A Gaussian Naïve Bayes classifier was the meta-
model of the stacking ensemble [8].  

TABLE I.  CNN MODEL PARAMETERS, WITH THE HYPER-
PARAMETERS SHOWN IN BOLD. 

Parameters 2D CNN + LSTM 

Number of Filters 8, 16, 32 

Filter Dimensions (3 × 3), (5 × 5), (7 × 7) 

Stride 1 

Max-Pool window 2 × 2 

Max-Pool stride 2 

Dropout rate 0.5 

Units FCL1 16, 32 

Units LSTM 16, 32 

Units Softmax 11 

The original videos were split to generate the required 
training, validation and testing datasets. The 3 first exposure 
cycles to each VOC were selected for the training set, the 
fourth cycle for the validation set (to select the best 

hyperparameters and avoid overfitting) and the last one for 
the test set (to evaluate the classification performance). 

C. Collection of optical signal responses to VOCs 

Gelatin hybrid gels with the same formulation of those 
used for the video experiments were used as sensing 
materials in an in-house assembled optical signal acquisition 
device [4], [14]. The VOC delivery system used in the video 
experiments was connected to the acquisition device to 
generate identical VOC samples. Using this setup, 8 
experiments were performed. In each experiment, multiple 
films were exposed sequentially to the 11 VOCs listed above 
[4]. The films were subjected to each VOC during 45 
consecutive cycles of exposure (5 s) and recovery (15 s, with 
clean air). In total, optical signals from 20 independent gel 
films from 8 different batches were collected.  

D. Optical signal analysis  

After filtering noise and high fluctuations with a median 
filter and a 100-point sliding window smoothing filter from 
the novainstrumentation Python library 
(https://github.com/hgamboa/novainstrumentation), the full 
optical signals were split into individual cycles. As we are 
interested in analysing the shape rather than the intensity of 
the films’ response to VOCs, the cycles were normalised. 
Fifteen morphological features (Table II) were extracted per 
cycle and used to build classification models based on a 
Support Vector Machines (SVM) classifier from scikit-learn 
Python library, with radial basis function kernel and 
hyperparameters C = 100 and γ = 0.1 [14].  

TABLE II.  FEATURES OF THE OPTICAL SIGNAL CYCLES 

Number Feature Description 

1 
Time to reach the minimum of the first derivative of the 

cycle 

2 Minimum value of the first derivative of the cycle 

3 
Time to reach the maximum of the first derivative of the 

cycle 

4 Maximum value of the first derivative of the cycle 

5 
Time to reach the maximum of the first half of the 

second derivative of the cycle 

6 
Maximum values of the first half of the second 
derivative of the cycle 

7 
Time to reach the minimum of the first half of the 

second derivative of the cycle 

8 
Minimum value of the first half of the second derivative 

of the cycle 

9 
Time to reach the maximum of the second half of the 

second derivative of the cycle 

10 
Maximum value of the second half of the second 

derivative of the cycle 

11 
Time to reach the minimum of the second half of the 
second derivative of the cycle 

12 
Minimum value of the second half of the second 

derivative of the cycle 

13 Area under the cycle 

14 Skewness  

15 Kurtosis 

Cycles from 6 experiments were used as training set and 
cycles from 2 experiments as testing set. All the possible 
combinations of training and testing sets were included by 
permuting the 8 available experiments. A confusion matrix 



was generated considering the predictions made by each 
model (one model per combination). 

RESULTS AND DISCUSSION 

E. VOC classification by video analysis 

Each gel film contained on average 130 droplets with 
diameters between 12 and 66 µm, all undergoing the same 5 
VOC exposure cycles. The YOLOv3 model [8], was able to 
detect droplets in individual frames with an average 
precision of 0.97 in the testing dataset. There were 4295 
sequences to train, 1368 to validate and 1345 to test the 2D 
CNN + LSTM models [8]. The ensemble model 
outperformed the single model by 3%, with an average F1-
score of 0.93 (Table III), suggesting that the best hyper-
parameters that were chosen for the single models are not the 
most suitable for every VOC or every droplet diameter. With 
the ensemble model there was a performance improvement 
for every VOC except ethyl acetate (F1-score 0.59) and 
dichloromethane (F1-score 76%). This might be related with 
the diameter of the droplets exposed to ethyl acetate, which 
was under 24 µm, the threshold above which we found better 
classifications[8]. The failures in the recognition of ethyl 
acetate also affect the F1-score of dichloromethane because 
most of the misclassified ethyl acetate sequences were 
wrongly classified as dichloromethane (Fig. 2a). The 
remaining VOCs were mostly correctly classified (accuracy 
higher than 0.95). These results suggest that the pattern of 
textural alterations of an individual droplet represent VOC 
fingerprints which could be used as VOC detectors. To 
further characterize this VOC classifier, the model could be 
tested with a test set comprising unseen droplet image 
sequences, taken from new videos. 

TABLE III.  CLASSIFICATION ON DROPLET IMAGE SEQUENCES TEST SET 

VOC 
F1-Score for 2D CNN+LSTM 

Ensemble model Single model 

Acetone 1 0.981 

Acetonitrile 0.962 0.887 

Chloroform 1 0.977 

Dichloromethane 0.763 0.834 

Diethyl ether 0.96 0.803 

Ethanol 0.991 0.978 

Ethyl acetante 0.594 0.608 

Heptane 1 1 

Hexane 1 0.990 

Methanol 1 0.989 

Toluene 0.982 0.940 

Average 0.932 0.908 

F. VOC classification with optical signals 

The optical signals of hybrid gel films (Fig 1a, 1b) are an 
alternative VOC detection method, relying on simpler 
hardware that measures the intensity of light transmitted 
through the gel films. As a film contains multiple droplets 
(Fig. 1b), the collected as signal is the cumulative effect of 
the LC disorganization patterns of individual droplets when 
exposed to the VOCs. Rich signal waveform patterns are 
generated in response to VOCs (Fig. 1d). The SVM classifier 
produced classifications with an average F1-score of 0.88, 
slightly lower than that of the video approach but still 
excellent. Several factors may justify the performance 
differences. The signals are a representation of the LC 

textural variations but lack information on colors. On the 
other hand, the signals dataset included more variability, 
which could decrease the performance. While videos were 
recorded in a single experiment and there was only one gel 
film per VOC, signals were obtained with 20 independent gel 
films per VOC, during 8 experiments performed in different 
days by different operators. We selected cycles from 
independent experiments for training and testing sets to test 
the ability of system to make predictions on new cycles 
based on past information. This is the closest approach to the 
concept of electronic nose. Correct classification rates 
between 0.76 and 0.99 were obtained (Fig. 2b), supporting 
the idea that the optical signals are a simple but rich 
representation that retains VOC-fingerprinting information. 
Two of the most misclassified VOCs, ethanol and methanol, 
are chemically similar, which might justify the confusion. 

 

Fig. 2. Normalised confusion matrices representing the rates of correct 

(diagonal) and incorrect (off-diagonal) VOC classifications for (a) the 
video analysis (b) the optical signals analysis. 

III. CONCLUSION 

We present two alternative VOC pattern recognition 
approaches applicable to hybrid gas-sensing gels VOC 



signals. The first one was the video analysis of the textural 
patterns of individual LC droplets. This is an entirely 
automated approach that takes advantage of the full extent of 
information carried by LC optical textures, namely 
morphological and colour changes along time. A deep 
learning stacking ensemble (2D CNN + LSTM) can learn an 
accurate model (0.93 F1-score) to detect 11 distinct VOCs. 
The second approach was based on a simpler representation 
of the LC optical responses – a 1D optical signal collected 
from a gel region with multiple LC droplets. A set of 15 
known features extracted from the signals are sufficient for a 
SVM algorithm to learn a model to accurately (0.88 F1-
score) detect the 11 VOCs. LC droplets respond fast (in less 
than 20 s) and are sufficient for VOC discrimination. The 
hybrid gel production is simple and scalable and so are the 
proposed CNN and SVM models. Our sensing platform is a 
versatile system where the transduction and pattern 
recognition methods can be adapted to the needs. 

IV. REFERENCES 

[1] R. J. Carlton et al., “Chemical and biological sensing using liquid 

crystals.,” Liq. Cryst. Rev., vol. 1, no. 1, pp. 29–51, 2013. 

[2] C. Esteves, E. Ramou, A. R. P. Porteira, A. J. Moura Barbosa, and A. 
C. A. Roque, “Seeing the Unseen: The Role of Liquid Crystals in Gas-

Sensing Technologies,” Adv. Opt. Mater., vol. 8, p. 1902117, 2020. 

[3] A. Hussain et al., “Tunable Gas Sensing Gels by Cooperative 
Assembly,” Adv. Funct. Mater., vol. 27, no. 27, p. 1700803, 2017. 

[4] C. Esteves et al., “Effect of film thickness in gelatin hybrid gels for 

artificial olfaction,” Mater. Today Bio, vol. 1, p. 100002, Jan. 2019. 
[5] C. Esteves et al., “Tackling Humidity with Designer Ionic Liquid-

Based Gas Sensing Soft Materials,” Adv. Mater., vol. 34, no. 8, p. 

2107205, Jan. 2022. 
[6] Y. Cao, H. Yu, N. L. Abbott, and V. M. Zavala, “Machine Learning 

Algorithms for Liquid Crystal-Based Sensors,” ACS Sensors, vol. 3, 

no. 11, pp. 2237–2245, Nov. 2018. 
[7] A. D. Smith, N. Abbott, and V. M. Zavala, “Convolutional Network 

Analysis of Optical Micrographs for Liquid Crystal Sensors,” J. Phys. 

Chem. C, vol. 124, no. 28, pp. 15152–15161, Jul. 2020. 
[8] J. L. Frazão et al., “Optical Gas Sensing with Liquid Crystal Droplets 

and Convolutional Neural Networks,” Sensors, vol. 21, no. 8, pp. 2854, 

Apr. 2021. 
[9] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 

CoRR, vol. abs/1804.0, 2018, [Online]. 

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” 
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. 

[11] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 

521, no. 7553. pp. 436–444, May 28, 2015. 
[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT 

Press, 2016. 

[13] L. I. Kuncheva, Combining Pattern Classifiers: Methods and 
Algorithms. NJ, USA: Wiley:Hoboken, 2014. 

[14] G. Santos, C. Alves, A. C. Pádua, S. Palma, H. Gamboa, and A. C. 

Roque, “An optimized e-nose for efficient volatile sensing and 
discrimination,” Proceedings of  BIODEVICES 2019, pp. 36–46, 2019. 


